

FIFTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2007

IT2K 502—GRAPH THEORY AND COMBINATORICS

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- 1. (a) Define a graph. Show how it can be represented by a matrix with an example.
 - (b) Describe the Chinese postman problem.
 - (c) With the help of an example, show the pre-order and post-order traversals in a rooted tree.
 - (d) Discuss a method to construct an efficient tree based on weights.
 - (e) How many permutations of size 3 can one produce with the letters m, r, a, f and t?
 - (f) State (i) Rule of sum; (ii) Rule of product.
 - (g) Explain generating function with an example.
 - (h) What do you mean by first-order linear recurrence relation?

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) (i) What do you mean by Hamilton cycle? Check if the following graph contains a Hamilton cycle. Justify your answer.

(10 marks)

(ii) Define a planar graph. Give an example.

(5 marks)

0

- (b) State Euler's theorem and show how it is used to characterize platonic solids. (15 marks)
- 3. (a) (i) Describe Prim's algorithm for finding minimum spanning tree. Apply the algorithm to the following graph:

(10 marks)

Turn over

- (ii) Evaluate the following expressions:
 - (A) +4/*23+1-9*23.
 - (B) * + ab c * de

$$a = 2$$
; $b = 3$; $c = 5$; $d = 1$; $e = 2$.

(5 marks)

LUUL

Or

(b) (i) Describe Kruskal's algorithm. Apply it to find MST for the graph below:

(10 marks)

(ii) Define a Transport network. Give an example.

(5 marks)

4. (a) (i) State the binomial theorem.

(5 marks)

- - (ii) Determine the coefficient of:
 - (A) xyz^2 in $(x + y + z)^4$.
 - (B) xyz^2 in $(2x y z)^4$.

The second of the second second section is a second second

(10 marks)

(b) (i) State the principle of inclusion and exclusion.

(7 marks)

(ii) Explain root polynomial with the help of an example.

- (8 marks)
- 5. (a) (i) Find the generating function for the number of ways to select 10 chocolate icecreams from large supplies of 6 different brands.
 - (8 marks)
 - (ii) Determine the sequence generated by the following generating function :

$$f(x)=(2x-3)^3.$$

(7 marks)

Or

- (b) (i) State the exponential generating function for a sequence of real numbers. (5 marks)
 - (ii) Solve the following recurrence relation :-

$$a_{n+1} - a_n = 2n + 3, n \ge 0$$

 $a_0 = 1$

(10 marks)

 $[4 \times 15 = 60 \text{ marks}]$