D 42089

(Pages:2)

Name

Reg. N

FIFTH SEMESTER B.TECH. (ENGINEERING) **DEGREE EXAMINATION, DECEMBER 2007**

Electronics and Communication Engineering

EC 2K 502 – ELECTROMAGNETIC FIELD THEORY

Maximum : 100 Marks

Time : Three hours

- I. (a) In an xy plane charge Q_2 is = 150 µc at (5.0) m, experiences a repulse force. of 6 N because of Q_1 at (7, 8) m find Q.
 - (b) Write Laplace's and Poisson's equation's. Write their significances.
 - Explain the applications of magnetic boundary conditions. (c)
 - What are motional and transformer e.m.f. ? Explain. (d)
 - Define and explain conduction current and displacement current. Write their expression. (e)
 - State Helmholtz theorem. Write Lorentz Gauge condition. (f)
 - Explain the characteristics of wave passing through a conductor. (g)
 - Explain the significance of impedance matching in detail. (h)

 $(8 \times 5 = 40 \text{ marks})$

- (i) Obtain the expressions for resultant potential and electric field for an electric dipole.
- (ii) Explain the principle of method of images with neat sketches and its applications. II. (a)

Ór

- (i) State and derive electrostatics uniqueness of theorem
- (ii) Verify that the expression for the potential due to an electric dipole gatistics the laplace (b) equation.
- (i) Give an account on 'magnetisation in materials'. III. (a)
 - (ii) Derive expressions f-o. Inductance of solenoids and toroids.

Or

- (i) State and derive lens law of electromagnetic induction. (8 marks) (b)
 - (ii) Derive expressions for energy stored in a magnetic field and in a electric field. (7 marks

Turn over

(8 marks)

(7 marks)

		2 ~	D 42089
IV. (a)	(i)	Obtain Maxwell's equations in time varying form.	
		Derive Maxwell's equations in integral and differential forms.	(8 marks)
		Or	(7 marks)
(b)	(i)	Define and derive pointing theorem.	
	(ii)	Show that the displacement current through the capacitor is equicurrent 1.	(8 marks) al to the conduction
2		$V = V_{msinwt}$ \bigcirc $I = C$	(7 marks)
V. (a)	(i)	Derive wave equations for a conducting medium.	<i>(</i>)
	(ii)	Explain the significant of Brewster angle. Obtain an expression for	it. (8 marks) (7 marks)
		Or	
(b)		Derive Smith chart equations.	(8 marks)
	(ii)	Draw a neat sketch of a single stub inner and explain its principle of	foperation.
2 ¹⁰ 10			(7 marks)
			$(4 \times 15 = 60 \text{ marks})$

*

14

ų,

•