

CS/IT 04 303—DISCRETE COMPUTATIONAL STRUCTURES

Answer all questions.

1. (a) What do you mean by Universal quantifiers and Existential quantifiers ?
(b) State and prove De Morgan's laws using truth tables.
(c) Let $\mathrm{A}=\{a, b, c\}$. Determine whether the relation R whose matrix M_{R} is given is an equivalence relation.

$$
\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(d) Let $\mathrm{A}=\{1,2,3,4,12\}$. Consider the partial order of divisibility on A . That is, if a and $b \in \mathrm{~A}$, $a \leq b$ if and only if $a \mid b$. Draw the Hasse diagram of the poset (A, \leq).
(e) Write short notes on Hamming code.
(f) What do you mean by Euler path and Euler circuit? Illustrate with an example.
(g) If $\mathrm{F}(a)$ is the finite extension of F , show that a is algebraic over F .
(h) Define Rings. Give an example.

$$
(8 \times 5=40 \text { marks })
$$

2. (a) (i) Show that $(P \rightarrow Q) \wedge(R \rightarrow Q)$ and $(P \vee R) \rightarrow Q$ are equivalent.
(ii) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q, Q \rightarrow R, P \rightarrow M$ and 7 M .
(b) (i) Prove by using direct method:

The sum of an even integer and an odd integer is an odd integer.
(ii) Prove that $\sqrt{5}$ is not a rational number. (Prove by contradiction). (8 marks)
3. (a) (i) Prove that if R is a symmetric relation, then $R \cap R^{-1}=R$.
(ii) On the set of Natural number N , the relation R is defined " $a \mathrm{R} b$ " if and only if " a divided b ". Show the R is antisymmetric.
(b) (i) R is the set of real numbers given that

$$
f(x)=x+2, g(x)=x-2, \text { and } h(x)=3 x \forall x \in \mathrm{R} .
$$

Find $G \circ F, f \circ g, f \circ f, g \circ g, f \circ h, h \circ g, h \circ f$ and $f \circ g \circ h$.
(8 marks)
(ii) Let \leq be a partial ordering of a set s. Define the dual order on s. How is the dual order related to the inverse of the relation \leq ?
4. (a) (i) Show that the set $G=\{-1,1\}$, is a finite abelian group of order 2, under multiplication.
(ii) If $(G, *)$ is a group of even order prove that it has an element $a \neq e$ satisfying $a^{2}=e$.
(8 marks)

> Or
(b) (i) State and prove Lagrange's theorem.
(ii) Show that every cyclic group is commutative.
5. (a) (i) Show that the system ($\mathrm{E},+$, .) of even integer is a ring under ordinary addition a multiplication.
(ii) If R is a ring commutative with characteristic 2 , show that $(a+b)^{2}=a^{2}+b^{2} \forall a, b \in \mathrm{R}$. (8 marks)

Or

(b) Show that an element $a \in \mathrm{~K}$ is algebraic over F if and only if $\mathrm{F}(a)$ is finite extension of the field F.

