(Pages : 2)

Name Reg No. 3

## THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2007

## EC 04 305—ELECTRONIC CIRCUITS—I

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

- I. (a) Give a short description on unity Gain Bandwidth.
  - (b) Give a short account on T-model of a transistor.
  - (c) Compare between FETs and BJTs.
  - (d) Write short note on low-frequency model of FET for small-signal operations.
  - (e) Derive an expression for voltage gain of a common-collector amplifier.
  - (f) Give a short account on low frequency and high frequency response of a common emitter amplifier.
  - (g) Explain Nyquist criterion on stability of feedback amplifiers. .
  - (h) With figure, give account on Colpitts oscillator.

 $(8 \times 5 = 40 \text{ marks})$ 

II. (a) Give hybrid-π model of a common emitter amplifier explain and derive various parameters during high frequency operation.

Or

(b) Derive simplified expression of current-gain, voltage gain, input impedance, output impedance for common-collector amplifier circuit.

(15 marks)

III. (a) (i) Differentiate between E-MOSFET and D-MOSFET with the help of transfer curve.

(8 marks)

(ii) Draw small signal equivalent of common source amplifier and derive expression for voltage gain, Av.

(7 marks)

Or

- (b) Give a detailed account on biasing depletion and enhancement MOSFETs. (15 marks)
- IV. (a) (i) Write notes on (1) Short circuit current gain-bandwidth product; (2) Corner frequency.

  (8 marks)
  - (ii) Draw small signal equivalent circuit for an emitter follower at high frequencies.

(7 marks)

O

Turn over

- (b) Write a detailed account on Miller capacitance and high frequency response of CE amplifier.

  (15 marks)
- V. (a) Describe different feedback amplifier topologies in detail.

(15 marks)

Or

(b) (i) Draw a current series feedback circuit and obtain expression for input and output impedance.

(7 marks)

(ii) Explain UJT Relaxation Oscillator circuit. Mention some of the applications of the circuit.

(8 marks)

 $[4 \times 15 = 60 \text{ marks}]$