Name....

Reg. No.

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2007

EC/AI 04 303—ELECTRIC CIRCUIT AND NETWORK

(2004 admissions)

Time: Three Hours

Part A

Answer all the questions.

In the circuit given there is no initial charge on the capacitor if the switch is closed at t =
determine the resulting current.

2 For the initially inert network, the excitation is $v_g(t) = \frac{1}{2} \cos t \, u(t)$. Determine the free a forced response parts of $v_0(t)$.

3 Determine the driving point impedance function of the given circuit.

Turn o

- 4 Plot the following poles on S-plane and determine the nature of time response of the individual poles. Assume response to be current. $S_1 = 1 \pm j1$, $S_2 = 2 \pm j2$.
- 5 Find the four 'y' parameters for the given network.

6 Apply the T - π transformation to obtain an equivalent T network for the capacitive network given in the figure.

- 7 It is required to find a transfer function for a low-pass filter to satisfy the following specifications:
 - The end of the pass band is 10 kHz.
 - The peak to peak ripple in the pass band must not exceed 1dB.
 - At 60 kHz the response must be down at least 50 dB from its peak value in the pass band.
- 8 Design a π type attenuation to give an attenuation of 50 dB and to walk in a line of 600 Ω impedance. $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) State and prove initial and final value theorem.

(6 marks)

(b) A periodic function with T = 5 has the values : f(t) = 0, 0 < t < 1, and 3 < t < 5 and $f(t) = 3 + \delta$ (t-3), $1 < t < 3^+$ find its Laplace transform.

(5 marks)

- (c) Determine f(t) if:
 - (i) $F(s) = \frac{s}{s^2 + 4},$

(ii)
$$\frac{8s-2}{s^2-6s+10}$$
.

(4 marks)

III. (a) Find i(t) in the given circuit.

(7 marks)

(b) Find both the initial and final values of the time functions:

(i)
$$\frac{8s-2}{s^2+6s+10}$$
.

(ii)
$$\frac{2s^3 - s^2 - 3s - 5}{s^3 + 6s^2 + 10s}.$$

(8 marks)

IV. Determine the transfer impedance, driving point impedance and voltage transfer function of the given network.

(15 marks)

Or

V. Find ABCD constants and show that AD - BC = 1, for the given network.

(15 marks)

- VI. Discuss in detail about the different methods of interconnection of two port networks. (15 marks)

 Or
- VII. Derive expressions for the elements of a T network interms of known z parameters of a two port network.

(15 marks)

Turn over

VIII. Synthesize (a) a band-pass filter; (b) a band stop filter with maximally flat (n=4) am plitud response with $wc_2 = 8 \times 10^4$ Hz and $wc_1 = 2 \times 10^4$ Hz.

(15 marks

Or

IX. Discuss in detail about the different types of filters.

(15 marks

 $[4 \times 15 = 60 \text{ mark}]$