(Pages 2)

D 41974

Name Reg.

THIRD SEMESTER B.TECH. (ENGINEERING) DECRE EXAMINATION, DECEMBER 2007

Computer Science Engineering/Information Technology

PTCS/IT/CS 2K 303-DISCRETE COMPUTATIONAL STRUCTURES

Time : Three Hours

Maximum : 100 Marks

COLLEG

Answer all the questions.

- 1. (a) Find the truth table of $(\neg (P \lor Q) \lor \neg R) \lor (((\neg P \lor Q) \lor \neg R) \land P)$.
 - (b) Show that $P \to (Q \to R) \Leftrightarrow (P \land Q) \to R$ without using truth table.
 - (c) Show that for any two sets A and B A (A \cap B) = A B.
 - (d) Let A be the set of factors of the integer 20 and $R = \{(x, y)/x \text{ divides } y\}$. Draw the graph of R and also give its matrix.
 - (e) Define $g: (z, +) \rightarrow (z_n + n)$ by g(x) = remainder of x on division by n prove that g is a homomorphism.
 - (f) If (G, *) is an abelian group, then for all $a, b, \in G$, show that $(a * b)^n = a^n * b^n$.
 - (g) Define a Boolean ring. Prove that every boolean ring is commutative.
 - (h) If R is a ring, then show that for all $a, b \in \mathbb{R}$, (i) a0 = 0a = 0 (ii) a(-b) = (-a)b = -(ab).

 $(8 \times 5 = 40 \text{ marks})$

(7 marks)

2. (a) (i) Obtain the principal conjuctive normal form of the statement $(P \land Q) \lor (\neg P \land Q \land R)$.

- (ii) Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x).$ (8 marks) Or
- (b) (i) Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R$ and P are inconsistent. (7 marks)
 - (ii) Show that $P \lor Q, Q \to R, P \to M, \neg M \Rightarrow R \land (P \lor Q).$ (8 marks)
- 3. (a) (i) If $f: x \to x$ and $g: x \to x$ are both objective, show that $(g \cdot f)^{-1} = f^{-1} \cdot g^{-1}$. (8 marks)

(ii) If A has 'n' elements, then prove that P (A) has 2^n elements.

Or

Turn over

(7 marks)

(8 marks)

(7 marks)

(7 marks)

(8 marks)

(7 marks) (8 marks)

(b) (i) Show that the De Morgan's laws given by $(a * b)' = a' \oplus b'$ and $(a \oplus b)' = a' * b'$ hold in a complemented, distributive lattice.

- (ii) Let R be a relation on the set of integers such that $a \ge b$ iff $a \le b$. Show that R is an equivalence relation.
- 4. (a) (i) Prove that any subgroup of a cyclic group is itself a cyclic group. (8 marks)
 - (ii) Show that the intersection of two normal subgroups of G is a normal subgroup of G.

Or

- (b) (i) If H is a subgroup of G, and $a \in G$ let $aHa^{-1} = \{aha^{-1}/h \in H\}$. Show that aHa^{-1} is a subgroup of G.
 - (ii) Prove that the minimum weight of the non-zero code words in a group code is equal to its minimum distance.

5. (a) (i) Prove that every finite integral domain is a field.

(ii) If ϕ is a homomorphism of a ring R into a ring R', then show that $\phi(0) = 0$ and $\phi(-a) = -\phi(a)$ for every $a \in \mathbb{R}$.

Or

(b) (i) Define an Euclidean ring. Prove that every Euclidean ring possesses a unit element.

(8 marks)

(ii) Prove that $x^2 + x + 4$ is irreducible over F, the field of integers mod 11. (7 marks) $[4 \times 15 = 60 \text{ marks}]$

(7 marks)