## THIRD SEMESTER B.TECH. (ENGINEERING) DE RRED EXAMINATION, DECEMBER 2007

Computer Science Engineering/Information Technology
PTCS/IT/CS 2K 303—DISCRETE COMPUTATIONAL STRUCTURES Time : Three Hours

Maximum : 100 Marks

## Answer all the questions.

1. (a) Find the truth table of $(\neg(P \vee Q) \vee \neg R) \vee(((\neg P \vee Q) \vee \neg R) \wedge P)$.
(b) Show that $P \rightarrow(Q \rightarrow R) \Leftrightarrow(P \wedge Q) \rightarrow R$ without using truth table.
(c) Show that for any two sets A and BA-(A $\cap \mathrm{B})=\mathrm{A}-\mathrm{B}$.
(d) Let $A$ be the set of factors of the integer 20 and $R=\{(x, y) / x$ divides $y\}$. Draw the graph of $R$ and also give its matrix.
(e) Define $g:(z,+) \rightarrow\left(z_{n}+n\right)$ by $g(x)=$ remainder of $x$ on division by $n$ prove that $g$ is a homomorphism.
(f) If (G, *) is an abelian group, then for all $a, b, \in \mathrm{G}$, show that $\left(a^{*} b\right)^{n}=a^{n}{ }^{*} \mathrm{~b}^{n}$.
(g) Define a Boolean ring. Prove that every boolean ring is commutative.
(h) If R is a ring, then show that for all $a, b \in \mathrm{R}$, (i) $a 0=0 a=0$ (ii) $a(-b)=(-a) b=-(a b)$.
2. (a) (i) Obtain the principal conjuctive normal form of the statement $(P \wedge Q) \vee(\neg P \wedge Q \wedge R)$.
(ii) Prove that $(\mathcal{F} x)(\mathrm{P}(x) \wedge \mathrm{Q}(x)) \Rightarrow(\mathcal{F} x) \mathrm{P}(x) \wedge(\mathcal{F}) \mathrm{Q}(x)$.
(b) (i) Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R$ and $P$ are inconsistent.
(ii) Show that $P \vee Q, Q \rightarrow R, P \rightarrow M, \neg M \Rightarrow R \wedge(P \vee Q)$.
3. (a) (i) If $f: x \rightarrow x$ and $g: x \rightarrow x$ are both objective, show that $(g \cdot f)^{-1}=f^{-1} \cdot g^{-1}$.
(ii) If A has ' $n$ ' elements, then prove that $\mathrm{P}(\mathrm{A})$ has $2^{n}$ elements.
(b) (i) Show that the De Morgan's laws given by $\left(a^{*} b\right)^{\prime}=a^{\prime} \oplus b^{\prime}$ and $(a \oplus b)^{\prime}=a^{\prime *} b^{\prime}$ hold in a complemented, distributive lattice.
(ii) Let R be a relation on the set of integers such that $a \mathrm{R} b$ iff $a \leq b$. Show that R is an equivalence relation.
4. (a) (i) Prove that any subgroup of a cyclic group is itself a cyclic group.
(ii) Show that the intersection of two normal subgroups of $G$ is a normal subgroup of $G$.
(7 marks)

## Or

(b) (i) If H is a subgroup of G , and $a \in \mathrm{G}$ let $a \mathrm{H} a^{-1}=\left\{a h a^{-1} / h \in \mathrm{H}\right\}$. Show that $a \mathrm{H} a^{-1}$ is subgroup of G.
(ii) Prove that the minimum weight of the non-zero code words in a group code is equal to its minimum distance.
5. (a) (i) Prove that every finite integral domain is a field.
(ii) If $\phi$ is a homomorphism of a ring R into a ring $\mathrm{R}^{\prime}$, then show that $\phi(0)=0$ and $\phi(-a)=$ $-\phi(a)$ for every $a \in R$.
(b) (i) Define an Euclidean ring. Prove that every Euclidean ring possesses a unit element.
(ii) Prove that $x^{2}+x+4$ is irreducible over F , the field of integers $\bmod 11$.

