

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2007

Information Technology

IT 2K 601—DIGITAL SIGNAL PROCESSING

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- I. (a) Explain about causality and stability of an LTI system.
 - (b) State and prove convolution property of Z-transform.
 - (c) Find the DFS of $x(n) = \{1, 2, 3, 0\}$.
 - (d) State and prove time shifting property of DFT.
 - (e) Compare IIR filter with FIR filter.
 - (f) Explain the linear phase characteristics of FIR filter.
 - (g) The input to the system $y(n) = 0.99 \ y(n-1) + x(n)$ is applied to an ADC. What will be the power produced by quantization noise at the output of the filter of the input is quantized to 8 bits.
 - (h) Explain about overflow limit cycle oscillations.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Find the frequency response H(w) and impulse response of a causal discrete time LTI system which is characterized by the difference equation $y(n) = \frac{3}{4} y(n-1) + \frac{1}{8} y(n-2) = 2x(n)$.

Or

(b) Obtain the Inverse Z-transform of $X(z) = \frac{z+2}{2z^2 - 7z + 3}$ by Partial fraction method and contour integration method for all possible ROCs.

(15 marks)

III. (a) Find the 8-point DFT of $x(n) = \{1, 2, 3, 4, -2, -2, 2, 2\}$ using DIF-FFT algorithm.

Or

(b) (i) Find the linear convolution of $x(n) = \{1, 2, 3\}$ with $h(n) = \{4, 5, 6, 7, 8\}$ using circular convolution,

(10 marks)

(ii) Explain the relation between DFT and z-transform.

(5 marks)

Turn over

IV. (a) Design a digital Chebyshev filter for the following constraints using impulse invariant mapping.

$$0.707 \le ||H(w)|| \le 1,$$
 for $0 \le w \le \frac{\pi}{5}$

$$0 \le |H(w)| \le 0.1$$
, for $\pi/2 \le w \le \pi$

Or

- (b) Design a digital high pass filter with cut off frequency at 0.4 rad/sec. The filter order is N = 9. Use Hanning window function.
- V. (a) Obtain the cascade and parallel realization of the system having difference equation:

$$y(n) + 0.1y(n-1) - 0.72y(n-2) = 0.7x(n) - 0.252x(n-2).$$

Or

(b) Explain the effects of finite word length in FIR filters.

 $[4 \times 15 = 60 \text{ marks}]$