FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE JUNE 2007

EE 04 404—ELECTRONICS—II

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

- I. (a) Explain the concept of feedback. Show the effect of negative feedback on distortion of an amplifier.
 - (b) Explain the advantages and potential applications of Crystal Oscillators.
 - (c) Draw an op-amp summing amplifier and derive an expression for its output voltage.
 - (d) Draw a neat block diagram of PLL. Explain its principle.
 - (e) Define and explain the significance of:
 - (1) Lock Range.
 - (2) Capture Range.
 - (f) What is a notch filter? Explain its characteristics.
 - (g) Compare the parameters of analog switches with digital switches.
 - (h) What is a Wave shaping circuit? Explain its applications.

 $(8 \times 5 = 40 \text{ marks})$

- II. (a) (i) Derive an expression for closed loop voltage gain of feedback amplifiers. (7 marks)
 - (ii) Draw a neat circuit diagram of CC-BJT amplifier and its equivalent circuit. Explain how feedback is obtained.

(8 marks)

Or

(b) (i) State and derive the condition for oscillation.

(7 marks)

(ii) Draw a neat circuit diagram for Wien bridge oscillator and explain its principle. Derive the conditions for oscillation.

(8 marks)

III. (a) (i) What are Internally and Externally compensated op-amps? Explain.

(7 marks)

(ii) Draw op-amp summing and subtractor circuits. Derive expressions for output voltages.

(8 marks)

Or

(b) (i) Draw a neat op-amp V-I converter. Explain its principle of operation.

(7 marks)

(ii) Explain the principle of VCO with a neat block diagram.

(8 marks)

Turn over

(a) (i) Explain in detail the applications of PLL in signal reconstruction. (7 marks)

(ii) Draw op-amp Log amplifier. Derive expression for output voltage. (8 marks)

Or

(b) (i) Design an op-amp LPF with $f_c = 2 \text{ kHz}$. (7 marks)

(ii) Explain about gain adjustment in Butterworth LPF.

(8 marks)

V. (a) (i) Draw a neat circuit diagram of op-amp sample and hold circuit and explain its principle of operation.

(7 marks)

(ii) Give an account on 'Bipolar DAC'.

(8 marks)

Or

(b) Write Technical notes on:

(1) Simultaneous ADC.

(7 marks)

(2) Types of waveshaping circuits.

(8 marks) $[4 \times 15 = 60 \text{ marks}]$

. Sandintsifalio kii 1975 v

vod abijed jigan mesymposi bas pidk**ims** Tislos i bis

English management

Madigang ad adda a til sud i Til

(conti

0