C 31710

(Pages : 2)

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2007

ME 04 108-BASIC ELECTRICAL ENGINEERING

(2004 admissions)

Time : Three Hours

Maximum : 100 Marks

Name.

Reg. No.

Answer all questions.

Part A

- I. (a) Explain what is meant by linearity.
 - (b) Explain what is meant by damping torque.
 - (c) Explain the concepts of conductance and suceptance.
 - (d) What is meant by balanced three phase system ? Explain.
 - (e) Explain the principles of operation of step-down and step-up transformer.
 - (f) Discuss about autotransformer.
 - (g) Calculate the e.m.f. generated by a 4-pole wave-wound armature having 45 slots with 18 conductors per slot when driven at 1200 r.p.m. The flux per pole is 0.016 Wb.
 - (h) Explain the characteristics of series motors.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Define and explain the following terms :--

(i)	Permeability.	•		(ii)	Magnetic flux.
(iii)	m.m.f.			(iv)	reluctance.
·				Or	

	(b) (i)	Explain moving coil instruments for electrical measurements.	(8 marks)
2 *	(ii)	Explain eddy current losses in ferromagnetic materials.	(7 marks)
III.	(a) (i)	Derive an expression for resonant frequency of parallel resonant circuit.	(8 marks)
	(ii)	A series RLC circuit has a Q of 80 and a bandwidth of 160 Hz. Calculate frequency and the two half-power frequencies.	the resonant (7 marks)
		Or	
	(b) (i)	Explain voltages and currents in star and delta connections.	(8 marks)
	(ii)	Compare single and 3-phase supply systems.	(7 marks)
IV.	(a) (i)	Explain the theory of an ideal transformer.	(7 marks)

(ii) Explain open circuit test of a single phase transformer.

Or

Turn over

(8 marks)

- (b) (i) Explain copper loss in a transformer. (7 marks)
 (ii) Derive the condition for maximum efficiency of a transformer. (8 marks)
 V. (a) Explain the construction and working principle of a simple d.c. generator. (15 marks)
 - Or

Additions per allot when driven at 1200 s p.m. The flots per pole is 0.016 Wh

representation for reconnect frequency

frequency and the two half-newer

2

(b) (i) A 250-V series motor has an armature resistance of 0.08Ω and field resistance of 0.02Ω and produces full load torque when running at 500 r.p.m. taking a current of 40 A. Calculate (1) armature current; (2) the speed when producing half full-load torque. Neglect effect of armature reaction and saturation.

What is means by belighted three phase

(ii) Compare shunt and series motors.

(8 marks) (7 marks)

 $[4 \times 15 = 60 \text{ marks}]$

C 31710