

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2008

ALBM 04 305—DIGITAL SYSTEMS

(2004 admissions)

Time: Three Hours

Maximum: 100 Mark

Answer all questions.

Part A

- 1. Verify whether $A+BC+\overline{AC}=BC$ and reduce f=(a+b)(a+c)(b+c+d).
- 2. Determine the single error correcting code for the BCD number 1001 (information bits) using even parity.
- 3. Develop the circuit of a two bit binary comparator and explain its working.
- 4. Give the excitation tables and characteristics equations of JK and D flip-flops and explain.
- 5. Develop a 4-bit SISO shift register using SR flip-flop. Demonstrate the working with waveforms.
- 6. Draw any one open collector discrete gate circuit and explain its theory.
- 7. What is a state? Explain the concept of synchronous state machines.
- 8. Develop the state diagram of a 3-bit UP/DOWN gray code counter with a control input and explain.

 $(8 \times 5 = 40 \text{ marks})$

Part B

9. (a) Develop a full adder circuit using minimum number of discrete gates. Make use of K-map for design procedure. Implement the sane system using NAND gates alone.

Or

- (b) How negative numbers are represented in binary? Explain and compare any two methods with suitable numerical examples of your choice.
- 10. (a) Draw the basic block diagram of a single digit BCD adder and explain the operation.

Or

(b) Differentiate between decoder and demultiplexer. Implementary = $\Sigma m0, 2, 3, 4, 5$) using a suitable decoder and demultiplexer.

Turn over

D 51493

11. (a) Design a counter to pass through.......0, 2, 3, 5, 7......using JK flip-flop. The system should be free from lockout. Give the state table of the system.

Or

- (b) Draw the basic gate in ECL. Explain the working. Compare it with CMOS and TTL on power dissipation, speed, fanout, and package density.
- 12. (a) With block diagrams and suitable examples, differentiate between Moore and Mealy machines.

Or

(b) Design a state machine which recognizes the pattern 1010 and provide its state table.

 $(4 \times 15 = 60 \text{ marks})$