Name.
Reg. No.

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2008

CS/TT 04 303-DISCRETE COMPUTATIONAL STRUCTURES
(2004 Admissions)
Time : Three Hours
Maximum : 100 Marks

Answer all questions.

Part A

I. (a) Construct the truth table of the statement : $7(P \vee(Q \wedge R)) \rightleftharpoons(P \vee Q) \wedge(P \vee R)$.
(b) Obtain the disjunctive normal form of $\mathrm{P} \wedge(\mathrm{P} \rightarrow \mathrm{Q})$.
(c) Define composition of relations with an example:-
(d) Determine whether the operation * on the set of natural number given by $a^{*} b=\mathrm{v} \frac{a+b}{a b}$ is a binary operation.
(e) If the inverse of a is a^{-1}, then prove that the inverse of a^{-1} is ' a '.
(f) Define Group code.
(g) Give an example of a ring without zero divisors.
(h) State the Division Algorithm for polynomials over a field.

$$
(8 \times 5=40 \text { marks })
$$

Part B

II. (a) (i) Show that $(P \rightarrow(Q \rightarrow R)) \Rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R))$.
(ii) Show that $(x)(\mathrm{P}(x) \vee \mathrm{Q}(x)) \Rightarrow(x) \mathrm{P}(x) \vee(\exists x) \mathrm{Q}(x)$.

Or
(b) (i) Find a conjunctive normal form of $(q \vee(p \wedge v)) \wedge\rceil((p \vee r) \wedge q)$.
(ii) Prove that if $(x)(\mathrm{P}(x) \rightarrow \mathrm{Q}(x)),(\exists y) \mathrm{P}(y)$ then $(\exists z) \mathrm{Q}(y)$.
III. (a) (i) If $f: \mathrm{Z} \times \mathrm{Z} \rightarrow \mathrm{Z}$, where Z is the set of integers and $f(x, y)=x^{*} y=x+y-x y$, show tha the binary operation * is commutative and associative.
(ii) If R is the relation on the set of integers such that $(a, b) \in \mathrm{R}$ iff $3 a+4 b=7 n$ for some integer, prove that R is an equivalence relation.

Or
(b) (i) If the relations R and S on a set A are represented by the matrices :

$$
M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], M_{S}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

What are the matrices representing $R \cup S$ and $R \cap S$?
(ii) If $\mathrm{F}: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ are bijections, prove that $g \circ f: \mathrm{A} \rightarrow \mathrm{C}$ is also a bijection.
IV. (a) (i) If R is the additive group of real numbers and R_{+}is the multiplicative group of positive real numbers, prove that the mapping $f: \mathrm{R} \rightarrow \mathrm{R}_{+}$defined by $f(x)=e^{x}$ for all $x \in \mathrm{R}$ is an isomorphism.
(ii) Show that (2,5) encoding function defined by $e(00)=00000, e(01)=01110$ $e(10)=10101, e(11)=11011$ is C group code .

Or
(b) (i) State and prove Lagrange's Theorem.
(ii) Prove that the set of all $n n^{\text {th }}$ roots of unity forms a finite abelian group of order n wit. respect to multiplication.
V. (a) (i) Show that every field is an integral domain.
(ii) Show that the set of all 2×2 non-singular matrices over rationals is not a ring under matrix addition and multiplication.
Or
(b) (i) Show that the set of numbers of the form $a+b \sqrt{2}$ with a and n as rational numbers is a field.
(7 marks)
(ii) If D is an integral domain, then prove that the polynomial ring $\mathrm{D}[x]$ is also an integral domain.

