D 51488

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2008

(Pages 2)

CS/IT 04 303-DISCRETE COMPUTATIONAL STRUCTURES

(2004 Admissions)

Time : Three Hours

Maximum : 100 Marks

Answer all questions.

Part A

- I. (a) Construct the truth table of the statement : $](P \lor (Q \land R)) \rightleftharpoons (P \lor Q) \land (P \lor R).$
 - (b) Obtain the disjunctive normal form of $P \land (P \rightarrow Q)$.
 - (c) Define composition of relations with an example.
 - (d) Determine whether the operation * on the set of natural number given by $a * b = v \frac{a+b}{ab}$ is a binary operation.
 - (e) If the inverse of a is a^{-1} , then prove that the inverse of a^{-1} is 'a'.
 - (f) Define Group code.
 - (g) Give an example of a ring without zero divisors.
 - (h) State the Division Algorithm for polynomials over a field.

Part B

II. (a) (i) Show that $(P \to (Q \to R)) \Rightarrow ((P \to Q) \to (P \to R)).$ (7 marks)

(ii) Show that $(x) (P(x) \lor Q(x)) \Rightarrow (x) P(x) \lor (\exists x) Q(x).$ (8 marks)

Or

- (b) (i) Find a conjunctive normal form of $(q \lor (p \land v)) \land \neg ((p \lor r) \land q)$. (7 marks)
 - (ii) Prove that if $(x)(P(x) \rightarrow Q(x)), (\exists y) P(y)$ then $(\exists z) Q(y)$. (8 marks)
- III. (a) (i) If $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, where Z is the set of integers and f(x, y) = x * y = x + y xy, show that the binary operation * is commutative and associative.

(7 marks

 $(8 \times 5 = 40 \text{ marks})$

Turn ove

- (ii) If R is the relation on the set of integers such that $(a, b) \in R$ iff 3a + 4b = 7n for some integer, prove that R is an equivalence relation.
 - (8 marks)

Or

(b) (i) If the relations R and S on a set A are represented by the matrices :

	1				0	1	1	
$M_R =$	1	0	0	, M _S =	1	0	1	
	0	1	0			1	0	

What are the matrices representing $R \cup S$ and $R \cap S$?

(7 marks)

(ii) If $F: A \to B$ and $g: B \to C$ are bijections, prove that $g \circ f: A \to C$ is also a bijection.

(8 marks)

IV. (a) (i) If R is the additive group of real numbers and R_+ is the multiplicative group of positive real numbers, prove that the mapping $f: R \to R_+$ defined by $f(x) = e^x$ for all $x \in R$ is an isomorphism.

(7 marks)

(8 marks)

(7 marks)

(8 marks)

(7 marks)

(ii) Show that (2, 5) encoding function defined by e(00) = 00000, e(01) = 01110e(10) = 10101, e(11) = 11011 is C group code.

Or

- (b) (i) State and prove Lagrange's Theorem.
 - (ii) Prove that the set of all $n n^{\text{th}}$ roots of unity forms a finite abelian group of order n wit. respect to multiplication.
- V. (a) (i) Show that every field is an integral domain.
 - (ii) Show that the set of all 2×2 non-singular matrices over rationals is not a ring under matrix addition and multiplication.

Or

(b) (i) Show that the set of numbers of the form $a+b\sqrt{2}$ with a and n as rational numbers is a field.

(7 marks)

(ii) If D is an integral domain, then prove that the polynomial ring D[x] is also an integral domain.

(8 marks) [4 × 15 = 60 marks]