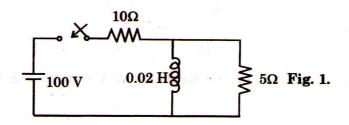
	1	1 5	
Name		-	
	*	1	(200)
THE WAR THE STREET	1	1.30	1 1/20 1 1

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2008


EC 2K 302—ELECTRICAL CIRCUITS AND NETWORK THEORY

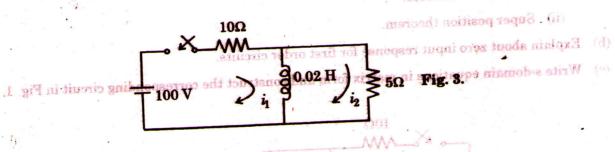
Time: Three Hours

Maximum: 100 Marks

Answer all questions.

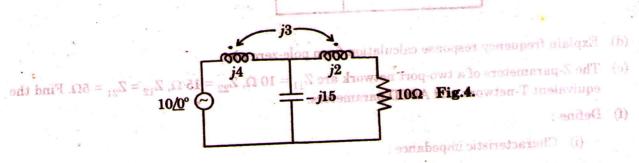
- I. (a) State the following theorems and explain:
 - (i) Thevenin's theorem.
 - (ii) Super position theorem.
 - (b) Explain about zero input response for first order circuits.
 - (c) Write s-domain equations in matrix form and construct the corresponding circuit in Fig. 1.

- (d) Explain frequency response calculation from pole-zero plot.
- (e) The Z-parameters of a two-port network are $Z_{11}=10~\Omega,~Z_{22}=15~\Omega,~Z_{12}=Z_{21}=5\Omega.$ Find the equivalent T-network and ABCD parameters.
- (f) Define:
 - (i) Characteristic impedance;
 - (ii) Image impedance;
 - (iii) Propagation constant.
- (g) Explain the properties of positive real functions.
- (h) Explain the synthesis of R.C. network by the Cauer method.

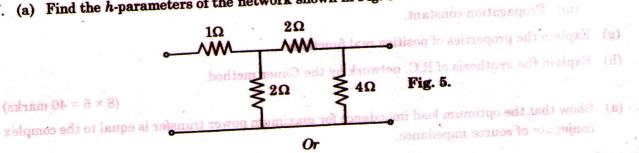

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Show that the optimum load impedance for maximum power transfer is equal to the complex conjugate of source impedance.

(b) Using Norton's theorem find the current I in the following circuit in Fig. 2.



III. (a) In the circuit shown in Fig. 3 below, find the currents which result when the switch is closed State the following theorems and explain: using Laplace transform. Thevenin's theorem.



(b) Find the voltage across the 10Ω resistor for the network shown in Fig. 4 below.

Or

IV. (a) Find the h-parameters of the network shown in Fig. 5 below.

(b) Design a m-derived high pass filter with a cut-off frequency of 10 kHz, design impedance of 600 Ω and m = 0.3.

Turn over

D 51428

V. (a) (i) Check the positive realness of the function $z(s) = \frac{s+3}{s+1}$.

- (6 marks)
- (ii) Check whether the function $z(s) = s^4 + s^3 + 6s^2 + 3s + 4$ is Hurwitz or not. (9 marks)

Or

(b) Find the first and second Foster forms of the function $z(s) = \frac{(s+1)(s+3)}{s(s+2)}$. (15 marks)

 $[4 \times 15 = 60 \text{ marks})]$

The E-parameters of a two-port actwork are $Z_{11}=10~\Omega,~Z_{22}=15~\Omega,~Z_{12}=Z_{21}=5\Omega.$ Find the equivalent T-network and ABCEV parameters.