

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2008

EN 2K 103 A - ENGINEERING PHYSICS (A)

(Common to AI, CS, EE, EC, IT, PT and IC)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- 1. (a) Explain Fresnel and Frunhofer diffraction. Distinguish between the two diffractions.
 - (b) Explain the function of Quarter wave and Half wave plates.
 - (c) What are de Broglie waves? Derive expression for de Broglie wavelength of an electron accelerated through a p.d. of V volts.
 - (d) Explain the production and detection of Ultrasound through Piezoelectric effect.
 - (e) What is population inversion? Explain different methods used for pumping.
 - (f) Explain the principle of semiconductor laser.
 - (g) Explain the function of solar cell.
 - (h) What is Josephson effect?

 $(8 \times 5 = 40 \text{ marks})$

- 2. (a) (i) What is interference? Explain the interference from Plane parallel thin films.
 - (ii) In an airwedge illuminated by a light of wavelength 6000 AU, 10 fringes are seen in one cm. Find angle of the wedge.

Or

- (b) (i) Explain with suitable mathematical derivation, the formation of circularly and elliptically polarised light.
 - (ii) Explain Double Refraction.

(15 marks)

- 3. (a) (i) Derive Schrodinger's time independent equation and explain its application to particle in a box.
 - (ii) Compute de Broglie wavelength of proton whose K.E. is equal to rest energy of electron.Mass of proton is 1836 times that of the electron.

O

- (b) (i) Explain the basic principles of NMR techniques and also describe the experimental method for detection of NMR.
 - (ii) Write the applications of Ultrasound.

(15 marks)

4. (a) (i) Write in detail an essay about fibre optic communication system and its advantages.

E GREEN TO THE RESIDENCE OF THE PARTY OF THE

(ii) Explain absorption, spontaneous emission and stimulated emission.

Or

- (b) (i) Write in detail an essay about fibre optic communication system and its advantages.
 - (ii) Transition occurs between a metastable state E_3 and an energy state E_2 just above the ground state. If emission is at 1.1 μ m and $E_2 = 0.4 \times 10^{-19}$ J, Find the energy of E_3 state.

(15 marks)

- 5. (a) (i) Explain Hall effect. Describe how Hall coefficient can be measured experimentally. Also write the importance of Hall effect.
 - (ii) Explain the construction and working of Photo transistor and photo resistor.

Or

- (b) (i) Explain with neat diagram the doping of intrinsic semiconductor and Fermi level in N-type and p-type materials.
 - (ii) Explain the construction and working of Zener diode.

Les**Sqifts ima givalernis te kerjamn**esaut, apstørma kajarinisus pro skivket, dije

teor of laupa at A A seeds later to feet

trau si notta lidge att dielege hier del

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$