(Pages: 2)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE JUNE 2008

EC 04 403—DIGITAL ELECTRONICS

(2004 admissions)

Time . Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

(a) Convert the following logic function into max. terms:

$$Y = (A + B) (B + C) (C + D) (D + E)$$

- (b) Explain unsigned adder and subtractor circuit.
- (c) List the characteristics of digital ICS.
- (d) Draw the circuit of edge triggered D flip-flop and explain.
- (e) Explain about Mealy stage model.
- (f) Describe the design procedure for asynchronous sequential circuit.
- (g) What is dynamic hazards? Explain.
- (h) How do you eliminate static hazard in an asynchronous circuit? Explain.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Using Karnaugh map simplify the following logic function and realise using logic gates.

$$Y = \sum m (5, 6, 7, 8, 9) + \sum d (10, 11, 12, 13, 14, 15)$$

Or

- (b) Draw the block diagram of 4-bit carry-look ahead adder and explain its operation
- III. (a) Draw the NAND and NOR logic circuit using CMOS and explain its operation.

Or

(b) Draw the circuit of 4-bit binary counter using J.K. flip-flop and explain its operation with timing diagram.

Turn over

IV. (a) For the following table, assume that the unspecified outputs in B and G are 1 and 0 respectively.

Derive the minimized state table for this FSM.

Present State	Next state		Output Z	
	W = 0	W = 1	W = 0	W = 1
A	В	C	0	0
В	D	-	0	in r ick
C	F	E	0	1
D	В	G	0	0
F.	F	C	0	1
P	E	D	0	1
G	F	- HG11	0	<u>190</u> 1251

Or

(b) Design a counter that counts pulses on line W and displays the count in the sequence.

1, 3, 7, 4, 1, 3, 7, ...

Use J.K. flip-flop.

- V. (a) Design asynchronous sequential circuit to give.
 - 6) Output when first pulse is received and ignoring further pulses.
 - (ii) Output when second pulses is received and further pulses are ignored.

Or

(b) Obtain a static hazard free asynchronous circuit for the following switching function.

 $\mathbf{F} = \sum m (0, 3, 4, 5, 7, 8, 10, 14)$

 $(4 \times 15 = 60 \text{ marks})$