Name Reg. Name

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2008

EC/AI/IC 2K 403—SIGNALS AND SYSTEMS

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

I. (a) Determine whether the following signals are energy or power or neither :--

1
$$x(t) = 10 \exp[j(50\pi t + 10)]$$

$$2 \quad x(t) = 5\sin\left(2\pi t + \frac{\pi}{3}\right).$$

- (b) Explain about (1) causality and (2) invertability of a system.
- (c) State and prove integration property of Fourier transform.
- (d) State sampling theorem for low-pass band limited signal and explain.
- (e) Derive the necessary and sufficient condition for BIBO stability of an LTI system.
- (f) Find the discrete Fourier series representation of $x(n) = \{1, 0, 1, 0\}$ with period N = 4.
- (g) Explain the properties of region of convergence of Z-transform.
- (h) A system is described by the difference equation :

$$y(n) = 0.5 y(n-1) + x(n)$$
.

Find its system function and plot pole-zero diagram.

 $(8 \times 5 = 40 \text{ marks})$

II. (a) Show that convolution operation obeys (i) commutative property and (ii) associative property.

$$(7 + 8 = 15 \text{ marks})$$

Or

(h) For the systems represented by following functions, determine whether every system is, (i) linear; (ii) time-invariant; and (iii) causal.

(i)
$$y(t) = 10 x(t) + 5$$
.

(ii)
$$\frac{dy(t)}{dt} + ty(t) = x(t)$$

(iii)
$$y(t) = \exp \{x(t)\}.$$

 $(3 \times 5 = 15 \text{ marks})$

- III. (a) (i) State and prove Parsavel's theorem for deterministic energy signal.
- (8 marks)

(ii) State and prove any two Properties of Hilbert transform.

(7 marks)

O

- (b) A system has the impulse response $h(t) = t\pi \exp(-4\pi t) u(t)$, where u(t) is unit step signal, and input to the system is $x(t) = 4\cos(4\pi t) + 4\cos(12\pi t)$. Find and plot the amplitude and phase spectra for the input and output signals of the system.
- IV (a) (i) Determine the discrete-time Fourier transform of the following signals:—

$$1 x(n) = 2^n u(-n).$$

$$2 x(n) = 2 - \frac{1}{2}n, |n| \le 4$$

$$= 0, |n| > 4.$$

(8 marks)

(ii) Determine the inverse DTFT of $X(w) = \cos^2(w)t \sin^2(3w)$.

(7 marks)

Or

(b) Determine the transfer function of the system described by the differential equation:

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = \frac{d^2x(t)}{dt^2} + 3\frac{dx(t)}{dt} + 2x(t)$$

and hence find the output of the system for x(t) = u(t) by assuming zero initial conditions.

V. (a) (i) State and prove convolution property of Z-transform.

(8 marks)

(ii) Determine Z-transform of $x(n) = \left(\frac{1}{2}\right)^n \cos(w_o n) u(n)$.

(7 marks)

Or

(b) Determine the impulse response of the system having difference equation:

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1).$$

 $[4 \times 15 = 60 \text{ marks}]$