C 46560

	IL		WR E	JUC.	20	1.
Name		7 E	3	1		()
	5	14	7	1		1
Reg No	12	14		15		E

EIGHTH SEMESTER B.TECH (ENGINEERING) DEGREE EXAMINATION JUNE 2008

EC 2K 802—OPTICAL COMMUNICATION

Time:	Thr	ee Hours	Maximum: 100 Marks			
I.	(a)	What is mode filter in a typical optical bench? Explain.				
	(b)	Write standard wave equations. Explain its applications to fiber diode.				
	(c)	Differentiate LED from LASER diode.				
	(d)					
	(e)					
	(f)	Explain the effect of ISI in multimode fibers with neat sketches.				
	(g)	Explain the principle of operation of Brillouin amplifier with a neat sketch.				
	(h)	Give an account on WDM based devices.				
	. ,		$(8 \times 5 = 40 \text{ marks})$			
II.	(a)	(i) Derive standard Maxwell's equations.	(7 marks)			
	` '	(ii) Differentiate single mode fiber from multimode fiber.	(8 marks)			
		Or				
	(b)	(i) Explain the attenuation mechanisms in optical fibres.	(7 marks)			
		(ii) Differentiate Intermoral dispersion from Intramodel dispersion.	(8 marks)			
III.	(a)	(i) Explain the principle of operation of a semiconductor laser with a neat diagram.				
			(7 marks)			
		(ii) Explain the detection principles of a APD with a neat diagram.	(8 marks)			
IV.	(a)	Explain the principle of operation of a Optical heterodyne system wi	th a neat block diagram.			
		Or				
	(b)	Explain in detail the PSK and FSK modulation formats. Derive the exof error.	xpressions for probability			
V.	(a)	Explain the principle of operation of a EDFA with a neat sketch. I Gain.	Derive an expression for			
		Or				
	(b)	Write short notes on:				
		1. Intermodulation effects.	(7 marks)			
		2. Principle of fiber raman amplifier.	(8 marks)			
			$(4 \times 15 = 60 \text{ marks})$			
		*				