SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE JUNE 2009

CS 04604 GRAPH THEORY AND COMBINATORICS
(2004 Admissions)
Time : Three Hours
Maximum : 100 Marks
Answer all questions.
I. (a) Define Euler graph and Euler line with examples.
(b) Show that "If a graph has 2 vertices of odd degree, there must be a path joining these vertices.
(c) Find the articulation points and biconnected components for the following graph.

(d) Define the following :
(i) Minimum spanning tree.
(ii) Fundamental cut set.
(e) Three are three married couples and that A, E and C are Females and D, E, F are males. Arrange the six people around the table so that the sexes allernate.
(f) If ' x ' and ' y ' are variables and ' n ' is a positive integer then show that $(x+y)^{\mathrm{n}}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
(g) Obtain the particular solution of the recurrence relation $a r+5 a r+6 a r-9=3 r^{2}$.
(h) Obtain the homogeneous solution of the recurrence relation

$$
4 a r-20 a r-1+17 a r-2-4 a r-3=0 .
$$

II. (a) (i) Prove that if a connected graph G is decomposed into two subgraphs g_{1} and g_{2} there must be at least on vertex common between g_{1} and g_{2}.
(8 marks)
(ii) Generate 2-isomorphic graphs for the following graph. Find out whether the two graphs have circuit correspondences or not. Justify your answer.
(7 marks)

Or

(b) (i) A graph has a dual if and only if it is planar.
(ii) If $G=(V, E)$ be defined by $V=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ and $E=\left\{\left(V_{1}, V_{2}\right),\left(V_{1}, V_{3}\right),\left(V_{2}, V_{4}\right)\right.$, $\left(\mathrm{V}_{3}, \mathrm{~V}_{4}\right)$. Use adjacency matrix to determine the number of paths of length 2 from V_{2} to V_{3}.
III. (a) (i) Prove that every tree with two or more vertices is 2 chromatic.
(ii) Explain how a minimum spanning tree of a weighted graph with real weights to edges is determined.
(7 marks)
Or
(b) (i) prove that "Every tree has either one or two centres".
(ii) Define rooled and binary trees with examples.
IV. (a) (i) Show that for all integers $n, r \geq 0$ and if $n+1>r . p(n+1, r)=\binom{n+1}{n+1-r} p(n, r)$.
(ii) Determine the number of positive integers $n, 1 \leq n \leq 200$ that are not divisible by 2,3 or 5 .
(7 marks)

Or

(b) (i) Find the total number of positive integers that can be formed From the digits 1, 2, 3, 4 if no digit is repeated in any one integer.
(ii) Thirty cars were assembled in a factory. The Options available were a radio, an air conditioner and white-wall tires. It is known that 15 of the cars have radios, 8 of them have air conditioners and 6 of them have white-wall tires Moreover, 3 of them have all three options. Determine.
(1) At most how many cars have one or more options?
(2) At least how many cars do not have any options?
V. (a) (i) Solve the recurrence relation $a r-5 a r-1+6 a r-2=3^{r}+r$.

Or
(b) (i) Solve the recurrence relation $a r-2 r-1=7 r^{2}$.
(ii) Solve $a r=3 a r-1+2$ by the method of generating function.

