1		١
	г	,

03000CE309092002

	R.e	eg No.:									N	ame:			1	(公)	STRE!	DUC 47	ONK	
		.g 110		AP.I	AR	DUL	KA	LAM	TEC	HNO		_	L UI	NIVI	CRSI	3/0	1	(8)	(X	12
								ech de							11:	71-	1.	SAS	કી	Mi
									8			(2	,,,	, , ,		* /		CHIDIAN		/ *
																11	ERU	THU	201	
				Co	urse	Nam	ie: W	Cou ATE	rse Co R RE				NGIN	NEEI	RINC	3				
12	ix. N	Marks: 100															Du	ration	: 3]	Hour
				1		4	. f1			RT A	~			aa 16		ul.a			7	Mark
	a)	Explain th						quest			•						tchm	ent	ı	(4)
	b)	Compare							-										e	(6)
	U)	precipitati						nou a	110 150	niyeta	11 1110	uiou	101	acter	111111a	itiOii	or a	verag	C	(0)
	c)	Explain ra						hveto	aranh	How	v wil	1 voi	I con	etruc	otah	veto	aranl	n fron	1	(5)
	C)	rainfall m				uive	anu	nycto	grapn	. 110v	v vvii	ı you	COII	Struc	tan	yero	grapi	11011	1	(3)
	a)	A trapezo	idal	char	nel	of be	d wid	lth 4 r	n and	side	slope	1:	carı	ries v	vater	at a	dep	th of 2	2	(5)
		m. The ra	ate	of ev	apor	ation	obs	erved	was	0.35	mm/	m ² /h	. Fin	d tł	ne da	aily l	oss	due to	0	
	٠,.	evaporation	on fi	om t	he ca	anal i	n a l	ength	of 10	km iı	ı ha ı	n.								
	b)	Explain th	ne fa	ctors	affe	cting	runc	off fro	m a c	atchm	ent									(10)
	a)	Enlist the	use	s and	limi	tatio	ns of	unit h	ydrog	graph	theor	у								(5)
	b)	Given be	low	are t	he or	dina	tes of	4 hr	UH of	f a bas	sin. D)eriv	e 2 hi	r UH	of th	e bas	sin u	sing		(10)
	t	S-curve m	etho	od																
		Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1		
		(hrs)																		
		UHO	0	20	36	60	80	112	120	105	92	40	24	14	9	7	0			
		(m³/sec)																14		
										RT B										
							•	ques			-		carri	es 15	5 mai	rks.				1.0
	a)	Define Du																		(5)
	b)	A canal w		_		•			•											(10)
		days base																		
		entirely to	irri	gate	whea	at of	base	perio	d 118	days	and l	havin	g de	lta of	50 c	cm, d	leterr	nine t	he	

5 a) Explain irrigation efficiencies.

(5)

b) Explain benefits and ill effects of irrigation.

area that can be irrigated by the canal supplies.

(4)

03000CE309092002

- c) Explain (i) field capacity (ii) permanent wilting point (iii) capillary water (6)
- 6 a) Explain the classification of river training.

(3)

b) The data pertaining to a stream gauging operation at a gauging station are given below. The rating equation of the current meter is $v = 0.51N_s + 0.03$ m/sec where N_s is the number of revolutions per second. Calculate the discharge in the stream.

(12)

Distance from left water edge (m)	0	1	3	5	7	9	11	12
Depth (m)	0	1.1	2	2.5	2	1.7	1	0
Revolutions of current meter kept at	0	39	58	112	90	45	30	0
0.6 depth								
Duration of observation (s)	0	100	100	150	150	100	100	0

PART C

Answer any two full questions, each carries 20 marks. *

7 a) Define safe yield and average yield of reservoirs.

(4)

b) Explain the method of determination of yield of reservoirs with a given capacity.

(4) (12)

c) A reservoir has a capacity of 3.6 Mha-m upto the level of the spillway crest. The average annual inflow is 1.5 Mha-m of water. If the average annual sediment inflow is $3x10^{11}$ kg, determine the useful life of the reservoir assuming that the usefulness of the reservoir is terminated when 2/3 of the total capacity is filled with sediments. Assume suitable value for specific weight of sediment.

C/I Ratio	2.4	2	1.6	1.2	0.8	0.4
Trap Efficiency	98.2	98	97.5	97	96	95

- 8 a) Stating the assumptions underlying it, derive the Dupuit's equation for steady radial flow (10) into unconfined aquifers.
 - b) During a recuperation test conducted on an open well in a region, the water level in the well was depressed by 3 m and it was observed to rise by 1.75 m in 90 minutes. (a) What is the specific yield of open wells in that region (b) What will be the yield from a well of 5 m diameter under a depression head of 2.5 m?
- 9 a) Describe the vertical distribution of ground water.

(5)

b) Differentiate (i) open well and tube well (ii) flowing well and artesian well

(6) (9)

c) A 30 cm diameter well completely penetrates a confined aquifer of permeability of 45 m/day. The length of the strainer is 20 m. Under steady state of pumping, the drawdown at the well was found to be 3 m, and the radius of influence was 300 m. Calculate the discharge. If the diameter of well is increased by 50 %, what will be the percentage increase in discharge?
