00000CS207121903

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Third semester B.Tech degree examinations (S) September 2020

Course Code: CS207

Course Name: ELECTRONIC DEVICES AND CIRCUITS

Max. Marks: 100

1

2

3 4

PART A

Duration: 3 Hours

Answer all questions, each carries 3 marks.	Mark
Draw a differentiator circuit and draw the input and output waveforms for	(3)
square wave input.	
Draw the input and output waveforms of a sweep circuit using a transistor as	(3)
a switch. Sketch the relevant circuit diagram.	
What are the different types of DC to DC converters.	(3)
Compare JFET with BJT.	(3)
PARTR	

PART B

Answer any two full questions, each carries 9 marks.

5	a)	Assuming suitable values, design an integrator circuit for a 1 KHz square	(5)
		wave. Draw the relevant waveforms and circuit with designed components.	

- b) Draw the circuit diagram of a three pin regulator for obtaining a 5V output. (4)
- 6 a) Draw the circuit of a transistor shunt regulator and explain its working. (5)
 - b) Design a circuit to convert a bipolar signal to a signal having value between (4)
 0V and above, without change in wave shape.
- 7 a) Draw the internal structure of IC723 and explain its working. (5)
 - b) Draw the circuit of a voltage tripler and plot the waveforms. (4)

PART C

Answer all questions, each carries 3 marks.

8	What is the significance of a load line in an amplifier?	(3)
9	Why are multistage amplifiers used? What are its drawbacks?	(3)
10	How does a crystal oscillator work? What are its advantages?	(3)
11	Draw the circuit of a RF tuneable oscillator and write the equation for	(3)
	finding its frequency of operation.	

PART D

Answer any two full questions, each carries 9 marks.

- 12 a) Why is potential divider biasing more stable and independent of transistor (5) characteristics than other biasing arrangements.
 - b) Design a transistor based circuit for generating a square wave of 1KHz. (4)
- 13 a) Design an amplifier using self biasing for maximum output swing of (5) approximately 10V and maximum collector current of 1 mA. Given β=100, V_{BE}=0.7V, draw the circuit using the designed components.
 - b) Draw the circuit diagram of a monostable multivibrator and explain its (4) working.
- 14 a) Design a transistor based Wien bridge oscillator for an output frequency of (5)
 5 KHz. Draw the circuit using the designed components.

2

b) Draw the circuit diagram of a common source MOSFET amplifier and (4) explain its working.

PART E

Answer any four full questions, each carries 10 marks.

- 15 a) With necessary figures, explain the concept of 'virtual ground' in an (4) operational amplifier.
 - b) Design a second order active low pass filter for 2.5 KHz, with a pass band (6) gain of 4dB. Draw the circuit with the designed components.
- 16 a) Compare the characteristics of an ideal operational amplifier with IC741. (5)
 - b) Design a first order active high pass filter for 3.3 KHz, with a pass band (5) gain of 3dB. Draw the circuit with the designed components.
- 17 a) Design a Schmitt trigger circuit using an operational amplifier when input (5) voltage, |V_{in}| > 3V. Assume an op-amp power supply voltage of ±12 V. Draw the circuit diagram and relevant waveforms.
 - b) Prove that a weighted resistor network can convert a digital signal to analog (5) signal. What are the drawbacks of this converter?
- 18 a) With the help of a circuit diagram and necessary equations, show how an (5) operational amplifier can be used to find the difference between two voltages.
 - b) With the help of necessary figures, explain the working of a 2 bit flash (5) ADC.

00000CS207121903

ENGG

cc

EDUCAS

- 19 a) Draw the figure of an operational amplifier differentiator and prove that the (5) output is proportional to derivative of the input.
 - b) With the help of necessary figures, explain the working of a mono-stable (5) multivibrator using IC555.
- 20 a) Design a Wien bridge oscillator using an operational amplifier for 1.5 KHz. (5)
 Draw the circuit diagram and relevant waveforms.
 - b) Draw the block schematic of a dual slope analog to digital converter and (5) explain its working.