(Pages : 2)

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMENDED JUNE 2009

EN 04 401 (A)—ENGINEERING MATHEMATICS—IV

(Common for all except CS and IT)

[2004 Admissions]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

- I. (a) Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at z = 0.
 - (b) An analytic function with constant modulus is constant.
 - (c) Evaluate the integral $\int_{C}^{z^2} \frac{d^2}{2 \cdot 3}$ where C is the unit circle |z| = 1.
 - (d) Expand $f(z) = \cos z$ in a Taylor's series about z = 0.
 - (e) Show that P_n (1) = 1 and P_n (-1) = (-1)n.
 - (f) Show that $\frac{2}{5} P_3(x) + \frac{3}{5} P_1(x) = x^3$.
 - (g) Solve using separation of variable method $y u_x + x u_y = 0$.
 - (h) Find the image of x + y = 2 under the transformation $w = z^2$.

 $(8 \times 5 = 40 \text{ marks})$

Part E

II. (a) (i) If $\sin (\theta + i\varphi) = \cos \alpha + i \sin \alpha$ prove that $\cos^2 \theta = \pm \sin \alpha$.

(8 marks)

(ii) Show that the transformation $w = \frac{1}{z}$ transforms circles and straight lines in the z-plane into circles or straight lines in the w-plane.

(7 marks)

a of the record are transfer of the a

(b) (i) Find the bilinear transformation that map the points $0,1,\infty$ of the z-plane into i,1,-i of the w-plane.

(8 marks)

(ii) Determine the analytic function u + iv whose real part is $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ and verify whether u satisfies Laplace equation.

(7 marks)

III. (a) (i) If
$$f(a) = \int_{C} \frac{3z^2 + 7z + 1}{z - a} dz$$
, where C is $|z| = 2$, find $f(4)$, $f'(1)$ and $f''(1)$. (8 marks)

(ii) Find the Laurent's series for
$$f(z) = \frac{z}{(z^2 - 1)(z^2 + 4)}$$
 if $1 < |2| < 2$. (7 marks)

Or

(b) (i) Evaluate
$$\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx m > 0$$
, $a > 0$ using contour integration. (8 marks)

(ii) Evaluate
$$\int_{C}^{\sin \pi z^2 + \cos \pi z^2} \frac{1}{(z-1)^2 (z-2)} dz$$
 around $|z| = 3$. (7 marks)

IV. (a) Find the series solution of the equation
$$4 x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + y = 0$$
. (15 marks)

Or

(b) Show that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
. (15 marks)

V. (a) If a string of length l is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}$, 0 < x < l, determine the transverse displacement y(x, t).

(15 marks)

Or

(b) A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that it may be considered as an infinite plate. If the temperature along short edge y = 0 is $u(x, 0) = 100 \sin \frac{\pi x}{8}$, 0 < x < 8 while two long edges x = 0 and x = 8 as well as the other short edge are kept at 0°C. Find the steady state temperature at any point of the plate.

(15 marks)

 $4 \times 15 = 60$ marks

Taku mini