C 57554

(Pages ? 2)

Reg. No.

Name...

COMBINED FIRST AND SECOND SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2009

AI 2K 109 EC/EE/IC/PTEC/2K107-BASIC ELECTRICAL ENGINEERING

Time : Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- I. (a) Explain what is meant by dependent and independent sources.
 - (b) Explain what is dynamically induced e.m.f.
 - (c) What is linear and time-invariant? Explain.
 - (d) Find the impulse response for series RC circuit.
 - (e) Find the form and peak factors for a square wave of amplitude unity.
 - (f) State and explain Thevenin's theorem.
 - (g) Compare single phase and polyphase systems.
 - (h) A system of unbalanced three-phase voltages are given by 100 V, j 200 V and (-100 - j 160) V.

Determine the three symmetrical components of the system.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Find the Thevenin's and Norton's equivalent circuits at terminals AB for the following circuits:---

- (b) (i) State and explain the following laws :
 - (1) Faraday's law of electromagnetic induction.
 - (2) Lenz's law.

(8 marks) (7 marks)

(ii) Derive the expression for energy stored in electrostatic field.

III. (a) In the following circuit the switch t is closed at t = 0. Find $i_1(t)$ and $i_2(t)$ for $t \ge 0$.

2

(b) (i) Find the initial value of the current whose Laplace transform is :

$$I(s) = \frac{3s^2 + 1}{(s^2 + 4)(2s + 3)}.$$

(3 marks)

(ii) A series combination of R and C is in parallel with a resistance of 20 Ω . At a source frequency of 60 Hz, the total current of 7.02 A divides so that the 20 Ω resistor takes 6A and the RC branch 2.3 A. Evaluate R and C.

(12 marks)

IV. (a) (i) Determine the average and r.m.s. values of the waveform shown below : (where $e = V_n e^{-200 t}$)

(9 marks)

(ii) Explain the relation between S-domain immittance functions and phasor impedance.

(6 marks)

Or

- (b) Derive the expression for Q-factor of a series RLC circuit.
- V. (a) Each branch of a delta connected load has a resistance of 16 Ω s and an inductive reactance of 12 Ω in series. Calculate the line current and total power when connected to a 400 V, 3-phase supply.

Or

(b) A 3-phase, 3-wire system, with a line voltage $V_{BC} = 339.4 \angle 0^{\circ}V$ has a balanced Y-connected load of $Z_{Y} = 15 \angle 60^{\circ}$. The lines between the system and the load have impedances $2.24 \angle 26.57^{\circ} \Omega$. Find the live-voltage magnitude at the load.