00000CS203121902

C

4

5

Reg No.:___

Name:

Duration: 3 Hours

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech examinations (S) September 2020

Course Code: CS203

Course Name: SWITCHING THEORY AND LOGIC DESIGN

Max. Marks: 100

PART A

		Answer all questions, each carries 3 marks.	Marks
1	(a)	Express each decimal number as an 8-bit number in the 2's complement form	(3)
		i) +101 ii) -125	
	(b)	Given $\sqrt{(224)_r} = (13)_r$, then what is the value of r?	
2	(a)	If $(73)_x = (54)_y$, then what are the possible values of x and y?	(3)

(b) The 16-bit 2's complement representation of an integer is

1111 1111 1111 0101. What is its decimal representation?

- 3 (a) What is the result of the operation $(10111)_2 * (1110)_2$ in hexadecimal. (3)
 - (b) Perform $(110101)_2$ - $(111111)_2$ by using 2's complement method.
 - (a) Prove the Boolean identities using laws of Boolean algebra (3)

i) x+x'y = x+y ii) x+xy=x+y

(b) Express the following functions:

i) F1=AB+BD' in sum of Minterms form.

ii) F2=AB+B'C in product of Maxterms form.

PART B

Answer any two full questions, each carries 9 marks.

(a) The value of a float type variable is represented using the single-precision 32-bit (5) floating point format IEEE-754 standard that uses 1 bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -14.25. What is the representation of X in hexadecimal notation?

(b) The following bit pattern represents a floating point number in (4) IEEE 754 single precision format

00000CS203121902

6	(a)	Reduce the following expression using K-Map. AB'C+B'+BD'+ABD'+A'C	(5)
	(b)	Perform the following operations	(4)
		i. (C45A) _{HEX} +(4B26) _{HEX} ii. (76) _{OCT} +(23) _{OCT}	
7	(a)	Simplify the Boolean function F (w, x, y, z) = $\Sigma m(0, 5, 7, 8, 9, 10, 11, 14, 15)$	(9)
		using Quine-McCluskey method.	
		PART C	
8		Answer all questions, each carries 3 marks.	(3)
0		Implement the Evolusive OP operation using NAND gates only	(3)
10	-	Give the truth table characteristics table excitation table and characteristic	(3)
10		equation of SR flip-flop	(3)
11		Explain state table and state diagram with an example	(3)
11		PART D	(\mathbf{J})
		Answer any two full questions, each carries9 marks.	· •
12	(a)	What is the disadvantage of binary parallel adder? Explain how a look ahead	(9)
		adder speeds up the addition process. Clearly show the derivations of equations.	
13	(a)	Explain race around condition in JK flip-flop. Explain how a master slave flip	(6)
		flop avoids race around condition.	
	(b)	Compare the working of edge-triggered flip flop and level-triggered flip flop.	(3)
14	(a)	Design a code converter for converting BCD to Excess 3 code.	(5)
	(b)	Explain the procedure to convert JK flip flop into T flip flop.	(4)
		PART E	
		Answer any four full questions, each carries 10 marks.	
15	(a)	Design and implement a 4 bit binary synchronous down counter.	(10)
16	(a)	Draw and explain 4 bit Johnson counter with its timing sequence.	(10)
17	(a)	Implement a 4- bit bidirectional shift register with parallel load.	(6)
	(b)	With a block diagram, explain the use of shift registers for serial transfer of data.	(4)
18	(a)	Describe the working of Programmable Logic Array (PLA) with a block	(10)
120010-040		diagram and a simple example.	
19	(a)	Write notes on Read Only Memory(ROM) and give any 2 applications of ROM.	(6)
	(b)	Write notes on Random Access Memory.	(4)
20	(a)	Draw a flow chart and explain the addition / subtraction of two floating point	(10)
		numbers.	
