B

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech examinations (S) September 2020

Course Code: EC201

Course Name: NETWORK THEORY

Max. Marks: 100

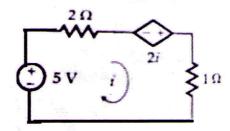
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

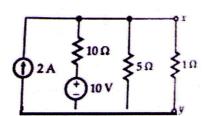
Marks

1 a) Explain Kirchoff's law with example


(2)

(8)

Explain final value theorem. Find final value of $F(s) = \frac{2}{s} - \frac{1}{s+3}$


Find the value of dependent voltage source

(5)

Find the power loss in 1 Ω resistor by Thevinin's theorem

(8)

Explain maximum power transfer theorem applied to dc circuits

(7)

3 Find the Laplace transform of (i) $f(t) = \cos^3 3t$ and (ii) $f(t) = \frac{(1 - e^{-t})}{t}$ a)

(8)

Explain tie set matrix, cut set matrix and fundamental cut set matrix with an example

(7)

PART B

Answer any two full questions, each carries 15 marks.

a) A continuous LTI system is initially relaxed and represented by the equation (8)y''(t) + 3 y'(t) + 2 y(t) = 2 x(t). Using Laplace transform Find (a) transfer

00000EC201121906

		function and (b) Find response of a system for input $x(t) = 4 e^{-3t}$	
	b)	A series RLC circuit with R= 100Ω , L= 0.1 H and C= $40~\mu F$ has a dc voltage of	(7)
		200 V applied at t= 0. Find the transient current.	
5	a)	Derive the response of a series RC circuit for a step input	(5)
	b)	What are the restrictions on poles and zeros for the transfer function and driving	(10)
	i ,	point functions	
6	a)	A $100\mu\text{F}$ capacitor has an initial charge Qo = 0.002 C is connected in series with	(8)
		200Ω across 50V supply at time t=0. Find the transient current.	
	b)	Define poles and zeros of a transfer function. For the given transfer function find	(7)
		the poles and zeros and also draw the pole zero plot	
		$I(s) = 20(s+5)/(s^2 + 5s + 6)$	
		PART C	
		Answer any two full questions, each carries 20 mark.	
7	a)	Two inductively coupled coils have self-inductance $L_1 = 50 \text{mH}$, $L_2 = 200 \text{mH}$.	(3)
		Given $k = 0.5$. Find the mutual inductance between the coil	
	b)	Two coupled coils have a coefficient of coupling $k=0.83$. With coil1 open, a	(6)
		current of 5A flows in coil 2. Given flux in coil 2 is 0.35 milli weber. Find L_1 , L_2	*
		and M.	
	c)	A coil having an inductance and resistance of 50 mH and 100Ω is connected in	(6)
5		series with a capacitor and a 100V, 1 kHz source. Find the value of capacitance	
		that will cause resonance in the circuit. Find the resulting current at resonance	
	d)	Define characteristic impedance and image impedance	(5)
8	a)	Explain Y parameters.	(6)
	b)	Derive the inter relation between open circuit impedance parameters and	(6)
		transmission parameters	
	c)	In a RLC series circuit, the resistance, inductance and capacitance are 10Ω ,	(8)
	x :	100 mH and 10 μ F. Find ω_0 , $\omega 1$ and ω_2 . Also find band width and selectivity	
9	a)	Explain parallel inter connection of two port networks	(6)
	b)	The h parameters of a two port network are $h_{11} = 1.5 \text{ k}\Omega$, $h_{12} = 2 \text{ x } 10^{-3}$, $h_{21} =$	(7)
		250 and $h_{22} = 150 \times 10^{-6}$. Find Z parameters and draw its equivalent	
	c)	Explain Double tuned coupled coils	(7)
