Reg No.:____

00000MA101121804me:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech examinations (S) September 2020 S1/S2 (2015 Scheme)

Course Code: MA101 Course Name: CALCULUS

Max. Marks: 100

Duration: 3 Hours

PART A Answer all questions, each carries 5 marks.

Marks

1	a)	Determine whether the series $\sum_{k=1}^{\infty} \left(\frac{2}{3}\right)^{k+2}$ converges. If so, find the sum	(2)
	b)	Find the Maclaurin series expansion of $f(x) = ln(1 - x)up$ to 3 terms	(3)
2	a)	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $ye^x - 5cos2z = 3z$	(2)
	b)	Use chain rule to find $\frac{dw}{dx}$ at (0,1,2) for $w = xy + yz$, $y = \sin x, z = e^x$.	(3)
3	a)	Find the velocity of a particle moving along the curve	
		$\vec{r}(t) = e^t \sin t \vec{i} + e^t \cos t \vec{j} + t \vec{k}$ at $t = \pi$	(2)
	b)	Find the unit normal to the surface $yz + zx + xy = c$ at (-1,2,3)	(3)
4	a)	Evaluate $\int_{1}^{2} \int_{y}^{3-y} dx dy$	(2)
	b)	Evaluate $\int_1^2 \int_0^x \frac{dy dx}{x^2 + y^2}$.	(3)
5	a)	Find the value of constant a so that if	(2)
		$\overline{F} = (3x - 2y + z)\mathbf{i} + (4x - ay + z)\mathbf{j} + (x - y + 2z)\mathbf{k}$ is solenoidal.	
	b)	Find the work done by a force field $F(x, y) = -yi + xj$ acting on a particle	(3)
		moving along the circle $x^2 + y^2 = 3$ from $(\sqrt{3}, 0)$ to $(0, \sqrt{3})$	
6	a)	Determine the source and sink of the vector field $F(x, y, z) = 2(x^3 - 2x)i +$	(2)
		$2(y^3-2y)j+2(z^3-2z)k$	
	b)	Using Stoke's theorem prove that $\int_C \vec{r} \cdot d\vec{r} = 0$ where $\vec{r} = x i + y j + z k$ and	(3)
		C is any closed curve.	

Page 1 of 3

00000MA101121804

RT B

	Module 1	
	Answer any two questions, each carries 5 marks.	
7	Test the convergence of the infinite series $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$.	(5)
8	Examine the convergence of $\sum_{k=0}^{\infty} \frac{(k+4)!}{4!k!4^k}$	(5)
9	Find the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{(2x-3)^k}{4^{2k}}$	(5)
	Module 11	
tes a ca	Answer any two questions, each carries 5 marks.	
10	The height and radius of a circular cone is measured with errors of atmost	(5)
	3% and 5% respectively. Use differentials to approximate the maximum	
	percentage error in calculated volume.	
11	If $u = x^2 tan^{-1}\left(\frac{y}{x}\right) - y^2 tan^{-1}\left(\frac{x}{y}\right)$, find $\frac{\partial^2 u}{\partial x \partial y}$	(5)
12	Find relative extrema and saddle points, if any, of the function $f(x, y) = x^3 + y^3$	(5)
	$y^3 - 15xy.$	
	Module 1II	
	Answer any two questions, each carries 5 marks.	
13	Find where the tangent line to the curve $r(t) = e^{-2t}i + \cos t j + 3\sin t k$ at	(5)
	the point (1,1,0) intersects the YZ plane.	
14	Find the position and velocity vectors of the particle given	(5)
	$\mathbf{a}(t) = (t+1)^{-2}\mathbf{j} - e^{-2t}k$, $\mathbf{v}(0) = 3\mathbf{i} - \mathbf{j}$, $\mathbf{r}(0) = \mathbf{k}$	
15	A particle moves along a curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$ where t is the	(5)
	time. Find the component of acceleration at time $t = 1$ in the direction of	

 $\vec{i} - 3\vec{j} + 2\vec{k}$

Module 1V

Answer any two questions, each carries 5 marks.

(5)

16 Evaluate $\iiint_R xysin z \, dV$ where R is the rectangular box defined by

 $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le \frac{\pi}{6}$

- 17 Sketch the region of integration and evaluate $\int_1^2 \int_y^{y^2} dx \, dy$ by changing the (5) order of integration.
- 18 Use double integral to find the area bounded by the x - axis(5) y = 2x and x + y = 1

Page 2 of 3

00000MA101121804

Module V

	hidduic v	
	Answer any three questions, each carries 5 marks.	
19	Prove that $\int_C (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$. $d\overline{r}$ is independent of the	(5)
	path and evaluate the integral along any curve from $(0,0,0)$ to $(1,2,3)$.	
20	Evaluate $\int_C xy^2 dx + xy dy$ where C is a triangle with vertices at (0,0), (0,1)	(5)
	and (2,1)	
21	Evaluate $\int_C 2xy dx + (x^2 + y^2) dy$ along the curve $C: x = \cos t$, $y = \sin t$,	(5)
	$0 \le t \le \frac{\pi}{2}$	
22	Determine whether $F(x, y) = 6y^2 i + 12xy j$ is a conservative vector field. If	(5)
	so find the potential function for it.	
23	If $\overline{F} = (\sin z + y \cos x)i$ + $(\sin x + 2 \cos y)j$ + $(\sin y + x \cos z)k$, find	(5)
	Div \overline{F} and Curl \overline{F} .	
	Module VI	
	Answer any three questions, each carries 5 marks.	
24	Using Stoke's theorem, evaluate $\int_C \overline{F} \cdot d\overline{r}$ where C is the boundary of the	(5)
	projection of the sphere $x^2 + y^2 + z^2 = 1$ on the XY plane with	
	$\overline{F} = (2x - y)\overline{\iota} - yz^2\overline{J} - y^2z\overline{k}$	
25	Using Green's theorem evaluate $\int_C (y^2 - 7y)dx + (2xy + 2x) dy$ where C is the	(5)
	circle $x^2 + y^2 = 1$	
26	Evaluate using divergence theorem for $\vec{F} = x^2 i + zj + yzk$ taken over the cube	(5)
	bounded by $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$ and $z = 1$	
27	Evaluate the surface integral $\iint_{\sigma} z^2 ds$, where σ is the portion of the curve	(5)
	$z = \sqrt{x^2 + y^2}$ between $z = 1$ and $z = 3$	
28	Use Green' theorem to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(5)
