03000EC306052001

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech degree examinations (S), September 2020

Course Code: EC306

Course Name: Antenna & Wave Propagation

Max. Marks: 100

3

Duration: 3 Hours

(5)

(12)

(7)

PART A Answer any two full q

uestions,	each	carries	15	marks	 -	Marks
acsitons,	eucn	curries	13	marks	-	Marks

1	a)	With a neat diagram of the experimental setup, explain how radiation pattern	(10)
		measurement of anantenna is carried out.	. ,
	b)	Explain antenna field zones	(5)

- Derive expressions for the Far Field components and Radiation Resistance of a 2 a) short dipole antenna.
 - Calculate the effective aperture of a short dipole antenna operating at 100 MHz. b) (3)
- a) State and Prove Reciprocity Theorem. 3
 - b) The radiation intensity of the major lobe of an antenna is represented by (8)
 - $U = A_0 \cos\theta, \ 0 < \theta < \frac{\pi}{2}, \ 0 < \Phi < 2\pi$

Find the maximum directivity?

PART B

Answer any two full questions, each carries 15 marks

4	a)	Explain the working of a rhombic antenna and its applications.	(8)
	b)	Explain the working of V antenna.	(7)
5	a)	Design a Dolph –Tschebyscheff array of 10 elements with spacing of $d = \lambda/2$	(1)
		between the elements and major to minor lobe ratio is 26 dB.	(15)
6	a)	Derive expression for directions of pattern maxima, pattern minima and HPBW	(10)
		for a endfire array of 'n' elements.	(10)
	b)	With neat diagrams explain the principle of operation of a Horn antenna.	(5)
		PART C	
7	a)	Answer any two full questions, each carries 20 marks With detailed diagrams explain the structure and modes of operation of helical	(12)
		antenna.	
	b)	Explain duct propagation.	(8)

8 a) Define Critical frequency and Maximum usable frequency. (5)

03000EC306052001

b) With the help of neat diagrams explain the principle of operation of Log (10) PeriodicAntenna.

(5)

c) Explain Tropospheric scatter propagation.

.2

- 9 a) Design a rectangular microstrip antenna using a dielectric substrate with (15) dielectric constant of 2.2, h = 0.1588 cm so as to resonate at 10 GHz.
 - b) What is fading. Explain the diversity techniques adopted in wave propagation. (5)
