D

leg No	74	Name:
	ADI ADDIH IZ	ALAM TECHNOLOGICAL UNIVERSITY

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

Course Code: EC206

Course Name: COMPUTER ORGANISATION (EC)

Max. Marks: 100 **Duration: 3 Hours**

M	ax. N	Marks: 100 Duration: 3	Hours
		PART A Answer any two full questions, each carries 15 marks	Marks
1	a)	Draw the block diagram of a 16-bit ripple carry adder using full adders. Calculate	(7)
		the delay of a 32-bit ripple carry adder. Assume a full adder delay is 200ps.	
	b)	Express the following base 10 numbers in 16-bit fixed-point two's complement	(8)
		format with eight integer bits and eight fraction bits. Express in IEEE 754 single-	
		precision floating-point format also. Express your answer in hexadecimal.	
		(a) -20.5 (b) 24.25	
2	a)	Explain any two assembly instruction formats in MIPS with examples.	(6)
	b)	Write the operation performed in MIPS processor when it executes the following instructions (a) add \$t0, \$s4, \$s5 (b) lw \$t2, 32(\$0) (c) sw \$s1, 4(\$t1)	(9)
3	a)	Draw the symbol and implementation of a 4 x 4 multiplier.	(7)
	b)	Discuss about operands and registers of MIPS processor. Write the use of \$0,	(8)
		\$gp, \$sp and \$t8.	
		PART B	
		Answer any two full questions, each carries 15 marks	
4	a)	Explain five addressing modes of MIPS with example.	(15)
5	a)	Draw the datapath for single cycle processor for sw instruction.	(9)
	b)	List the characteristics of single-cycle and multi cycle microarchitectures.	(6)
6	a)	How does a multicycle processor address the weakness of single-cycle processor?	(7)
	b)	Explain the steps involved in executing a high level language program. Draw the	(8)

flow chart.

02000EC206052004

PART C

Answer any two full questions, each carries 20 marks

7	a)	Explain any two modes of data transfer between the processor/memory and I/O	
٠		devices in a computer system.	
	b)	Draw the internal organization of a DRAM cell and explain the read and write	(6)
		operation.	
	c)	Illustrate virtual address to physical address translation using page table.	(8)
8	a)	Define miss rate and average memory access time.	(6)
	b)	Draw the internal organization of a SRAM cell and explain the read and write	(8)
		operation.	
	c)	Compute the size of a 4096-word x 32-bit memory array. Also find the width of	(6)
		address and data bus.	
9	a)	Describe temporal locality and spatial locality with respect to cache memory.	(6)
	b)	Illustrate how data is found in a C=8 word, 2-way set associative cache	(10)
	c)	Draw the internal organization of a 4 x 3 memory array.	(4)
