00000PH100121804

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech examinations (S) September 2020 S1/S2 (2015 Scheme

Course Code: PH100 Course Name: ENGINEERING PHYSICS

Max. Marks: 100

Duration: 3 Hours

	PART A	
1	Answer all questions, each carries 2 marks. Explain any two practical cases of damping.	Marks (2)
2	State the laws of transverse vibration of a stretched string.	(2)
3	What are antireflection coatings?	(2)
4	Define dispersive power of a grating and write an expression for it.	(2)
5	What is optic axis and principal section of a doubly refracting crystal?	(2)
6	Define critical temperature and critical field of a superconductor.	(2)
7	Justify the statement "No light source can emit true monochromatic light".	(2)
8	Distinguish between bosons and fermions.	(2)
9	What is echelon effect? How can it be remedied?	(2)
10	How ultrasonic waves are detected using a thermal detector?	(2)
11	What are the basic components of a laser system?	(2)
12	What is the working principle of LED?	(2)
	PART B	
	Answer any 10 questions, each carries 4 marks.	
13	The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^4 Find the relaxation time. Also calculate the time after which its energy becomes $(1/10)^{\text{th}}$ of its initial undamped value.	(4)
14	The equation of transverse vibration of a stretched string is given by $y = 0.00327 \sin (72.1x-2.72t)$, x and y are in metre and t in seconds. Evaluate (i) Amplitude (ii) Wavelength (iii) Frequency and (iv) Velocity of	(4)
	wave.	~ ~
15	Account for the colours of thin films viewed in white light.	(4)
16	Two lines in the second order spectrum of a plane transmission grating are resolved. If the lines are due to lights of wavelengths 5890 A^0 and 5896 A^0 . Find the minimum number of lines in the grating.	(4)
17	Explain how anisotropy in crystalline solids contributes to double refraction.	(4)
18	Explain Type I and Type II Superconductors.	(4)
19	An electron is confined in a potential which closely approaches an infinite	(4)

00000PH100121804

square well of width 2.5×10^{-10} m. Calculate the three lowest permissible quantum energies of the electron.

- 20 Write three postulates of FD statistics and it's distribution equation. (4)
- 21 Calculate the reverberation time of a hall having volume **4000** m³ and total (4) sound absorption of **160 Sabine**. Find the additional sound absorption required for an optimum reverberation of **1.5** s.
- An ultrasonic source of frequency **0.09 MHz** sends down a pulse towards sea (4) bed which returns after **0.55 s**. The velocity of sound in water is **1800 m/s**. Calculate the depth of the sea and wavelength of the pulse.
- 23 What is population inversion? Using energy level diagrams explain how it is (4) achieved in a Helium-Neon laser?
- 24 What are the advantages of optical fibre communication over conventional (4) mode of communication?

PART C

Answer any three questions, each carries 6 marks.

- 25 Write the differential equation of a forced harmonic oscillator. Derive the (6) expressions for the amplitude and phase difference.
- 26 Discuss in detail Fraunhofer diffraction at a single slit and obtain the (6) expression for width of central maximum.
- 27 Define circularly and elliptically polarised light. What is a quarter wave plate? (6) How it can be used to analyze circularly and elliptically polarized light?
- 28 (a) Assuming the time dependent Schrodinger equation derive time independent (6)
 Schrodinger equation.
 - (b) What are eigen values and eigen functions?

9

PART D

Answer any three questions, each carries 6 marks.

- 29 Define reverberation and reverberation time. Write Sabine's formula. What is (6) its significance?
- 30 What is the principle of a piezoelectric oscillator? With the circuit diagram (6) explain the working of a piezoelectric oscillator.
- 31 Explain the construction and reconstruction of a hologram. Give its advantages (6) over photograph.
- 32 Define numerical aperture of an optic fibre. Obtain an expression for the (6) numerical aperture of a step index fibre.
