04000CE473092001

Reg No.:_____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh semester B.Tech examinations (S), September 2020

Course Code: CE473

Course Name: Advanced Computational Techniques and Optimization

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

(9)

- 1 a) Solve the following system of equations using Gauss-Seidel method:
 - 8x-3y+2z = 20; 4x+11y-z = 33; 6x+3y+12z = 35.
 - b) Explain the errors in numerical methods.

- (6)
- 2 a) Find the largest eigen value and corresponding eigen vector of matrix (8)

$$A = \begin{pmatrix} 9 & 1 & 8 \\ 7 & 4 & 1 \\ 1 & 7 & 9 \end{pmatrix}.$$

b) Explain optimization procedure and constrained optimization.

- (7)
- a) Find the extreme points of the function using multi variable unconstrained (9) optimization technique

$$f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$$

b) Define slack variable, surplus variable, and artificial variables.

(6)

PART B

Answer any two full questions, each carries 15 marks.

4 a) Apply Lagrange's formula to find f(5). Given that,

(8)

$$f(1) = 2$$
, $f(2) = 4$, $f(3) = 8$, $f(7) = 128$.

b) The pressure and volume of a gas are related by the equation $pV^{\gamma} = k$, γ and k (7) being constants. Fit this equation to the following set of observations:

p(kg/cm2)	0.5	1.0	1.5	2.0	2.5	3.0
V(litres)	1.62	1.00	0.75	0.62	0.52	0.46

5 a) Using simplex method solve the LPP: Maximize $z = x_1 + x_2 + 3x_3$ subject to (8)

$$3x_1 + 2x_2 + x_3 \le 3; 2x_1 + x_2 + 2x_3 \le 2; x_1, x_2, x_3 \ge 0.$$

04000CE473092001

- b) Write the dual of the following LPP; Minimize $z = 2x_1 + 3x_2 + 4x_3$ subject to $2x_1 + 3x_2 + 5x_3 \ge 2$; $3x_1 + x_2 + 7x_3 = 3$; $x_1 + 4x_2 + 6x_3 \le 5$; $x_1, x_2 \ge 0$, x_3 is unrestricted. (7)
- 6 a) Evaluate $\int_{0}^{1.2} e^{-x^2} dx$ using (i) Simpson's $1/3^{\text{rd}}$ rule (ii) Simpson's $3/8^{\text{th}}$ rule, taking h=0.2.
 - b) Convert the following LPP to the standard from:

 Maximize $Z = 3x_1 + 5x_2 + 7x_3$ subject to $6x_1 4x_2 \le 5$ $4x_1 + 3x_3 \le 2$ $x_1, x_2 \ge 0$ (6) $x_1 + 2x_2 + 5x_3 \ge 11$

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Solve $y = y^2 + x$; y(0) = 1 by using Taylor series method and compute y(0.1) and y(0.2).
 - b) Solve by Crank Nicholson's implicit method $u_t = u_{xx}$, 0 < x < 1, t > 0 with (10) $u(x,0) = 100(x-x^2)$, u(0,t) = 0 and u(1,t) = 0. Compute u for one time step with h=0.25
- 8 a) Using steepest descent method, minimize $f(x_1, x_2) = 2x^2 + x_2^2$ with the starting point (1,2). (2 iterations only)
 - b) Find the minimum of $f = x^2 1.5x$ by starting from 0 with an initial step size (10) 0.05 by unrestricted search with (i) Fixed step size (ii) Accelerated step size
- 9 a) Find y(0.1) and y(0.2) correct to four decimal places by Runge-Kutta fourth (10) order method given by $\frac{dy}{dx} = y x$; y(0) = 2.
 - b) List out any five unconstrained optimization techniques. (5)
 - c) Explain: (5)
 - i) Unimodal Function
 - ii) Gradient of a function
