Reg	g No.:		Name:	12/3/34	· O
		API ARDIII KALAM T	FECHNOLOGICAL UNIV	EDCITY	7
	FO	URTH SEMESTER B.TECH DE		11 1 1 Care	550
			rse Code: EC212	110-	
	Cours	e Name: LINEARINTEGRATI	ED CIRCUITS AND DIGIT	TAL ELECTRONIC	CS
Ma	x. Mai	rks: 100		Duration: 3 I	Hours
		Answar all augstion	PART A		Marks
1	Answer all questions, each carries 5 marks. 'Sample and hold circuit can samples an input signal and holds on to its last sampled				(5)
	value'. Justify the statement.				
2	Com	pare the combinational and sequ	ential circuits. Give a few e	xamples of each of	(5)
	them				
3	Deriv	ve the output voltage for a 4 bit R	-2R ladder D/A converters.		(5)
4	Write a short note on the following				
	a	offset voltage			
	b) Bias current			(5)
	c)) CMMR			
	d) Slew rate				
5	Show	that how a S-R flip flop can be c	converted into a D flip flop.		(5)
6	a) Subtract using 1's complement, 100-110000.				(5)
	b) Subtract using 2's complement, 11011-100101.				
7	Design an octal to binary encoder.				(5)
8	Defin	ne ROM. Differentiate between sta	atic and dynamic RAM.		(5)
			PART B		
_			questions, each carries 10 m	iarks.	
9	a) P	Perform the following conversions	S.		(10)
		a) $(4021.25)_{10}$ to binary	d) (4537) ₈ to hexadecimal		
		b) $(95.05)_{10}$ to hexadecimal	e) $(11010111)_2$ to octal		
		c) $(1E7C)_{16}$ to octal			
10	a) H	low we can use log and antilog ar	mplifier in analog multiplier.		(4)
	b) A	Schmitt trigger with the upper	threshold level $V_{UT} = 0V$ and	nd hysteresis width	(6)
	$V_{\rm H}$ =0.2V converts a 1 kHz sine wave of amplitude $4V_{pp}$ into a square wave.				
	C	Calculate the time duration of th	ne negative and positive por	rtion of the output	

waveform

D192025

Pages:2

(9)

B

output waveform.

overlapping sequence 1101 is detected

16 a) What is a demultiplexer? Explain the difference between DEMUX and MUX. (5)

b) Design a sequence detector that produces an output '1' whenever the non

b) Implement the following Boolean function by using 8X1 multiplexer, f (A, B, C, (10) D) = Σ m (0, 2, 3, 6, 8, 9, 13, 14).

Design and implement a 4 bit synchronous down counter by using JK flip flops. (15)

Page 2 of 2