D192038

С

Reg No.:____

Name:

Pages:2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN

Max. Marks: 100 Duration		Hours				
PART A						
		Answer all questions, each carries 5 marks	Marks			
1	a)	Convert 9B30 ₁₆ to decimal.	5			
	b)	Subtract $5C_{16}$ from 94_{16} .				
2		Convert Y=AB + B'CD into a product of max terms by algebraic method.	5			
3		Design a full subtractor and show that it can be realized using two half	5			
		subtractors.				
4		Realize an S-R flip flop using D flip flop.	5			
5		What is the importance preset and clear pin in flip flops? How they are utilised	5			
		when designing a counter.				
6		Explain Moore state machine model	5			
7		Draw the schematic of a successive approximation A/D converter and explain	5			
		working				
8		Differentiate ROM, PLA and PAL circuits	5			
		PART B				
		Answer any two questions, each carries 10 marks				
9	a)	Explain the gray code 10110010101 to binary numbers	3			
	b)	Convert 1010.011 ₂ into decimal number	3			
	c)	Add the hexadecimal numbers $DF_{16} + AC_{16}$	4			
10	a)	Differentiate the methods of binary subtraction using 1's complement and 2's	5			
		complement methods with suitable example.				
	b)	Obtain the canonical product of sum form of the following function;	5			
		F(A,B,C) = (A+B')(B+C)(A+C')				
11	a)	Apply De-Morgan's theorems to the following expression $(ABC)' + (D'+E)'$	5			
	b)	Using karnaugh map, simplify the expression	5			
		$F(A,B,C,D) = \sum (0,2,3,5,7,8,13) + d(1,6,12)$				
PART C Answer any two questions, each carries 10 marks						

12 a) Design a full adder circuit with decoder I C

5

D192038

	b)	Realize a 4 bit parallel binary adder with look ahead carry generator	5
13	a)	Implement the function $F(A,B,C,D) = \sum (0,1,3,4,8,9,15)$ using a suitable	5
		multiplier	
	b)	What is the race around condition of a J-K flip flop? How can it be avoided	5
14	a)	Show how a T flip flop can be converted to S-R flip flop	5
	b)	Draw a parallel in -serial out (PISO) register and explain its working	5

PART D

Answer any two questions, each carries 10 marks

15	a)	Explain why Johnson counter have decoding gates, where as Ring counter does	5
		not?	
	b)	Explain the design of a synchronous counter with modulus $< 2^n$, take MOD -5	5
		counter as an example to illustrate	

16	a)	Construct a Johnson counter for 12 timing sequences.	5
	b)	Describe flash ADC and integrating type ADC	5
17	a)	Design and implement a half adder and a full adder using VHDL	5
	b)	Explain FPGA and what are the advantages of FPGA over other types of PLD	5

С