B192001

Reg No .:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

PART A

Duration: 3 Hours

(6)

Pages: 3

Answer all questions, each carries 3 marks

1	Find a general solution of the ordinary differential equation $y'' + y = 0$	(2)
2	Reduce to first order and solve. $yy'' = 3(y')^2$.	(3)
3		(3)
	Find the particular integral of $y'' - 4y' - 5y = 4 \cos 2x$.	(3)
4	Using a suitable transformation, convert the differential equation $(x^2D^2 + xD + 1)y = logx$ into a linear differential equation with	(2)
-	constant coefficients.	(3)
5	If $f(x)$ is a periodic function of period 2π defined in $[-\pi, \pi]$. Write down Euler's	
	Formulas a_0 , a_n , b_n for $f(x)$.	(3)
6	Find the half range Fourier cosine series of the function $f(x) = x$ in the range	
	0 < x < 2.	(3)
7	Find the PDE by eliminating arbitrary function φ from $xyz = \varphi(x + y + z)$.	$\langle 2 \rangle$
8	Solve $(D + 2D')(D - 3D')^2 z = 0.$	(3)
9	Write any three assumptions involved in the derivation of one dimensional wave Equation.	(3) (3)
10	A tightly stretched string of length l is fixed at both ends and pulled from its mid	
	point to a height h and released from rest from this position. Write down the	(3)
	initial and boundary conditions.	(\mathbf{J})
11	Write all possible solutions of one dimensional heat equation.	(2)
12	Find the steady state temperature distribution in a rod of length l if the ends are	(3)
	kept at $0^{\circ}C$ and $100^{\circ}C$.	(3)
	PART B	
	Answer six questions, one full question from each module	

six questions, one full question from each module

Module 1

b) Find a basis of solutions of the ODE $(x^2 - x)y'' - xy' + y = 0$, if $y_1 = x$ is a (5)

B192001

A

solution. OR	(6)
y'' - 3y'' - 4y' + 6y = 0.	(-)
14 a) Solve the ordinary differential equation $y''' - 3y'' - 4y' + 6y = 0$. b) Solve the ordinary differential equation $xy'' + 2y' + xy = 0$, given that	(5)
b) Solve the ordinary differential equation $xy + zy$	
$y_1 = \frac{\sin x}{x}$ is a solution.	
Module 1	
15 a) By the method of variation of parameters, solve $y'' + 4y = tan^2x$.	(6)
15 a) By the method of variation of parameters, sources	(5)
b) Solve $y'' + 2y = x^2 e^{3x}$.	
UK UK	(6)
16 a) Solve $(x+3)^2 y'' - 4(x+3)y' + 6y = 3x$.	(5)
16 a) Solve $(x + 3)^{-y}$	(5)
b) Solve $x^2y'' - 4xy' + 6y = x^5$. Module 111	
$module III = x - x^2 \text{ in } (-1,1).$	(6)
17 a) Find the Fourier series of f defined by $f(x) = x - x^2$ in (-1,1).	(5)
f(x) = c in the half range sine series	
b) Expand (x) OR	(11)
18 Obtain Fourier series for the function $f(x) = \cos x , -\pi \le x \le \pi$.	
18 Obtain Fourier series for a	
Module 1V	(6)
19 a) Solve $r + s + 2t = e^{x+y}$.	(5)
The general solution of $x^2(y-z)p + y(z)$	
b) Find the general sea	(6
$2 = (D_{1} D_{2})^{2} = D^{3} z = e^{x} \cos 2y$	=
20 a) Solve $(D^3 + D^2 D^2 - D D^{2} - D^{2})z = e^x \cos 2y$	(5
b) Solve $(D^2 + 3DD' + 2D'^2)z = x^2y^2$	
Module V	tension of 2
Module V 21 A uniform elastic string of length 60 cm is subjected to a constant	displacement
21 A uniform classes of are fixed, the initial	ro, find the (
Kg. If the ends are fixed, the $u(x, 0) = 60x - x^2, 0 < x < 60$ and the initial velocity is zero.	
u(x,0) = 00x + t in ti(x,t)	
displacement function $u(x,t)$	

OR

Page 2 of 3

B192001

Pages: 3

Find the deflection of the vibrating string which is fixed at the ends x = 0 and x = 2 and the motion is started by displacing the string into the form $\sin^3(\frac{\pi x}{2})$ (10) and released it with zero initial velocity at t = 0.

Module VI

Find the temperature distribution in a rod of length 2m whose endpoints are maintained at temperature zero and initial temperature is $f(x) = 100(2x - x^2)$. (10)

OR

A rod of length 30cm has its ends A and B kept at $20^{\circ}C$ and $80^{\circ}C$ respectively until steady state temperature prevails. Suddenly the temperature at A is raised to $60^{\circ}C$ and the end B is decreased to $40^{\circ}C$. Find the temperature distribution in the rod at time t.
