-

2

A		A192001 ENGG. CO	ENGG. CO Pages(3)		
Reg	No.:	Name:	6 6		
-		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	FILED		
FIRST SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019					
		Course Code: MA101			
Course Name: CALCULUS					
Max. Marks: 100 Duration: 3 Hou					
PART A					
1	a)	Find the sum of the series $\sum_{k=1}^{\infty} \frac{2}{3^{(k+4)}}$	(2)		
	b)	Determine whether the alternating series $\sum_{k=2}^{\infty} \frac{(-1)^k}{k} \frac{k}{k-1}$ converges.	(3)		
2	a)	Find the slope of the function $f(x, y) = x\cos(xy) + y\sin(xy)$ at $(\pi, 1)$ along the x- direction.	(2)		
	b)	If $z = f(x^2 - y^2)$, show that $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$	(3)		
3	a)	Find $\lim_{t\to 0} r(t)$, where $r(t) = \langle 1 + t^3, te^{-t}, \frac{\sin t}{t} \rangle$	(2)		
	b)	Find the directional derivative of $f(x, y) = e^x \cos y$ at P(0, $\pi/4$) in the direction of negative Y-axis	(3)		
4	a)	Evaluate $\int \int \int e^{x+y+z} dx dy dz$	(2)		
	b)	Evaluate $\iint_{R} (x^2 + y^2) dx dy$ where R is the region taken over the first quadrant for which $x + y \le 1$.	(3)		
5	a)	Find the divergence of the vector field $F(x, y, z) = x^2 y i + 2y^3 z j + 3z k$	(2)		
•	b)	Evaluate $\int_c x^2 dy + y^2 dx$ where C is the path $y = x$ from (0,0) to (1,1)	(3)		
6	a)	Determine the source and sink of the vector field $F(x, y, z) = 2(x^3 - 2x)i + 2(y^3 - 2y)j + 2(z^3 - 2z)k$	(2)		
	b)	If s is any closed surface enclosing a volume v and if	*		
		$A = axi + byj + czk$ prove that $\iint A.nds = (a + b + c) V$	(3)		

Page 1 of 3

A192001

(5)

(5)

PART B Module 1

Answer any two questions, each carries 5 marks.

- 7 Test for convergence of the series $\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$. (5)
- 8 Find the radius of convergence of $\sum_{k=0}^{\infty} \frac{(2x-1)^k}{3^{2k}}$. (5)
- 9 Expand $f(x) = \sin \pi x$ into a Taylors series about $x = \frac{1}{2}$, up to third (5)

derivative.

Module 1I

Answer any two questions, each carries 5 marks.

10 If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$. (5)

11 Find the local linear approximation
$$L(x, y)$$
 of $f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$ at the

point P(4,3).Compare the error in the approximation to f by L at
the point Q(3.92,3.01) with the distance between P and Q.
Locate all relative extrema and saddle point for the function
$$f(x, y) = x^3 + y^3 - 6xy + 20.$$
 (5)

Module 1II

Answer any two questions, each carries 5 marks.

13 Find the equation of the unit tangent and unit normal to the curve $x = e^t \cos t, y = e^t \sin t, z = e^t$; at t = 0. (5)

14

15

12

- A particle moves along the curve $r(t) = \left(\frac{1}{t}\right)i + t^2j + t^3k$, where t denotes time. Find
 - 1) The scalar tangential and normal components of acceleration (5) at time t = 1.

2) The vector tangential and normal component of acceleration at time t = 1

Find the equation of the tangent plane and the parametric equations

of the normal line to the surface $z = 4x^3y^2 + 2y - 2$ at (1,-2,10).

Module 1V

Answer any two questions, each carries 5 marks.

16 Use double integral to find the area of the plane enclosed by $y^2 = 4x$ and $x^2 = 4y$ 17 Change the order of integration to evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ (5)

A 18	A192001 Page	s:3
10	cylinder $x^2 + y^2 = 4$ and between the planes $z = 0$ and $y + z = 3$.	(5)
	Module V	
19	Answer any three questions, each carries 5 marks. If $\bar{r} = x \bar{i} + y \bar{j} + z \bar{k}$ and $r = \bar{r} $, prove that $\nabla^2 r^n = n(n+1) r^{n-2}$	(5)
20	Evaluate $\int_{C} (3x^2 + y^2) dx + 2xy dy$ along the curve	
	$C: x = \cos t, y = \sin t, \ 0 \le t \le \frac{\pi}{2}$	(5)
21	Find the scalar potential of $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$	(5)
22	Find the work done by $F(x, y) = (x + y)i + xy j - z^2 k$ along the line segments from (0,0,0) to (1,3,1) to (2,-1,5)	(5)
23	Show that $\int_{(0,0)}^{(1,\frac{\pi}{2})} e^x \sin y dx + e^x \cos y dy$ is independent of path.	(5)
	Hence evaluate $\int_{(0,0)}^{(1,\frac{\pi}{2})} e^x \sin y dx + e^x \cos y dy$	(5)
	Module VI	
24	Answer any three questions, each carries 5 marks. Evaluate using Green's theorem in the plane $\int_c (x^2 dx - xy dy)$ where C is the boundary of the square formed by $x = 0, y = 0, x = a, y = a$	(5)
25	Evaluate the surface integral $\iint_{\sigma} f(x, y, z) ds$ where	
	$f(x, y, z) = x + y$, σ is the portion of the surface $z = 6 - 2x - 4y$ in	(5)
26	the first octant. Using divergence theorem find the flux across the surface σ which is the surface of the tetrahedron in the first octant bounded by $x + y + z = 1$ and the coordinate planes, $\overline{F} = (x^2 + y)\overline{i} + xy\overline{j} - (2xz + y)\overline{k}$	(5)
27	Evaluate $\int_{c} (e^{x} dx + 2y dy - dz)$ where C is the curve $x^{2} + y^{2} = 4, z = 2$ using Stoke's theorem	(5)
28	Evaluate the surface integral $\iint_{\sigma} f(x, y, z) ds$ where $f(x, y, z) = x^2 + y^2$, σ is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ ****	(5)

Page 3 of 3