GG. COLLEGE:3

Reg No.:____

Name:

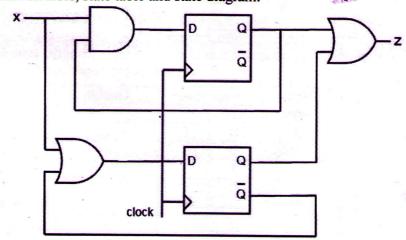
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S); DECEMBER 2019

Course Code: EC361

Course Name: DIGITAL SYSTEM DESIGN

Max. Marks: 100

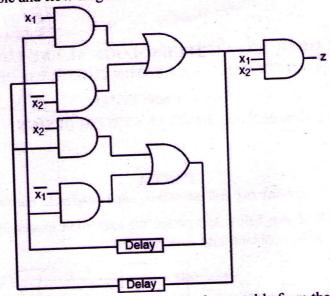

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

1 a) Study the CSSN shown below and obtain the excitation expressions, excitation/ (9) state transition table, state table and state diagram.

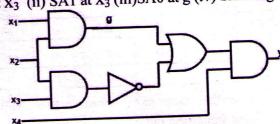


- b) Generate an ASM chart for a Mealy network that detects non-overlapping (6) sequence of 101.
- 2 a) Find the reduced flow table from the primitive flow table of a fundamental mode asynchronous sequential circuit given below. (9)

Present State		Next	state			Ou	tput	
	x=00	x=01	x=10	x=11	x=00	x=01	x=10	x=11
a	С	a	b	_	_	0		-
b	-	a	b	е	-		1	-
C	С	a		d	0	_	-	-
d	С	-	b	d	-	-	-	0
е	f		b	e		_	_	1
f	f	-	-	e	1	-	-	-

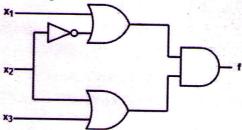
- b) Explain critical and non-critical races in asynchronous sequential circuits with the aid of an appropriate state transition table. (6)
- 3 a) Examine the ASC shown below to generate the excitation/transition table, state (7.5)

table, flow table and flow diagram.



b) Using implication charts, construct a minimal state table from the state table given (7.5) below.

Present State	Next	Output	
	X=0	X=1	
Α	В	C	1
В	D	E	0
C	Α	F	0
D	Е	C	0
E	G	Н	1
F	В	Н	1
G	D	F	0
н	F	Е	1


PART B
Answer any two full questions, each carries 15 marks.

- 4 a) Draw the logic circuit diagram of the SOP expression f=∑(2,3,6,7,11,12,13,15). (7.5)
 Examine the possibility of hazards in the circuit. Explain how the hazard can be detected and eliminated with the aid of Karnaugh map. (7.5)
 - b) Explain essential hazards in asynchronous sequential circuits.
- 5 a) For the circuit given in figure below, find the test vectors for the following faults (7.5) using path sensitization.
 - (i) SA0 at X₃ (ii) SA1 at X₃ (iii) SA0 at g (iv) SA1 at g.

b) Construct a table listing the set of all possible single stuck-at faults and the faulty (7.5)

and fault-free responses of the circuit shown below. Also find the fault cover table and identify the minimal complete test set.

- 6 a) Describe the operation of data synchronizers with the help of suitable timing (7.5) diagrams.
 - b) Find the test vectors for all SA0 and SA1 faults in the circuit whose Boolean (7.5) function is $f=x_1x_2+x_2'x_3+x_3x_4'$ using Kohavi algorithm.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Explain PLA folding. Define foldable compatibility matrix and state its properties. (12)
 - b) Determine the minimal test set for PLA $f = x_1x_2 + x_2x_4 + x_1x_3'x_4'$ (8)
- 8 a) Describe the simplified block diagram of configurable logic block of XC4000 (10) FPGA family.
 - b) Explain the switch matrix of Xilinx 9500 CPLD family with the help of a diagram. (10)
- 9 a) Explain various test generation techniques of PLA. (10)
 - b) With a suitable diagram, describe the input-output block architecture of Xilinx (10) 9500 CPLD family.
