	M.	GG. UCATIO	
Reg No.:	Name:	SE CONTON	
APJ ABDUL	L KALAM TECHNOLOGICA PU	NIVERSITY	4) 31
FIFTH SEMESTER B.T	ECH DEGREE EXAMINATION(R	&S), DECEMB	ER 2019
	Course Code: EC363		
Course	Name: OPTIMIZATION TECHN	IQUES	
Max. Marks: 100			Duration: 3 Hours
	PART A		

Answer any two full questions, each carries 15 marks.

(7)

Marks

1 a) Examine
$$f(x) = xe^{-x^2}$$
 for extreme points.

b) Maximize
$$f(x) = 2x_1 + x_2 + 10$$
 subject to $x_1 + 2x_2^2 - 3 = 0$ (8)

2 a) Solve the following LPP using Big M method. Maximize $Z = 2x_1 + 3x_2 + 4x_3$ subject (10) to

$$3x_1 + x_2 + 4x_3 \le 600, 2x_1 + 4x_2 + 2x_3 \ge 480, 2x_1 + 3x_2 + 3x_3 = 540, x_1, x_2, x_3 \ge 0$$

$$f(x) = 3x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3 - 6x_1 - 4x_2 - 2x_3.$$

- 3 a) Write the algorithm for a simplex method to solve a LPP. (7)
 - b) Maximize $f(x) = 3.6x_1 0.4x_1^2 + 1.6x_2 0.2x_2^2$ subject to the constraints (8) $2x_1 + x_2 \le 10$, $x_1, x_2 \ge 0$.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Show that transportation problem can be regarded as a particular case of linear (5) programming problem.
 - b) National oil company has three refineries and 4 Depots. Transportation cost per ton and (10) requirements are given below. Determine the optimal allocation of output.

	\mathbf{D}_1	D_2	D_3	D ₄	Capacity
P ₁	5	7	13	10	700
P ₂	8 -	6	14	13	400
P ₃	12	10	9	11	800
Requirement	300	600	700	400	

5 a) State dominance property in game theory and solve the following game.

(7)

$$\begin{bmatrix} 20 & -20 & 50 \\ -25 & 25 & -25 \\ 20 & -50 & 50 \end{bmatrix}$$

b) Consider the details of a distance network as shown below. Use PRIM algorithm to find the minimum spanning tree.

Arc	Distance
1-2	8
1-3	5
1-4	7
1-5	16
2-3	15
2-6	3
2-7	4
3-4	5

Arc	Distance
3-6	6
4-5	8
4-6	12
5-8	7
6-8	9
6-9	15
7-9	12
8-9	6

6 a) Use Dijkstra's algorithm on the network below to find the shortest path from A to H. (8)

b) Solve the following game using graphical method.

(7)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Use Fibonacci search method to find the minimum of the function $f(x) = x^2 + \frac{54}{x}$ in the (10) interval (0,5) with 6 step.
 - b) Minimize $f(x) = 2x_1^2 + x_2^2$ in two iterations starting from the point (1,2) using steepest (10)

E192106 Pages:3

descent method.

- 8 a) Draw the flow chart of Genetic algorithm and explain different stages associated with it. (10)
 - b) Define the following terms (i) Cross over (ii) Mutation (ii) Reproduction. (10)
- 9 a) Perform in two iterations to minimise $f(X) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ using (10) Hooke-Jeeve's method starting from the point (0,0). Take $\Delta x_1 = \Delta x_2 = 0.8$.
 - b) Explain the advantages of testing function and mutation in Genetic algorithm. (10)
