E192098

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC307

Course Name: POWER ELECTRONICS & INSTRUMENTATION

Max. Marks: 100

Duration: 3 Hours

Pages:

PART A

	Answer any two full questions, each carries 15 marks.	Marks
1a)	With neat diagram, explain the structural features of Power MOSFET.	(6)
1b)	Draw the Safe Operating Area (SOA) of (i) Power BJT (ii) Power MOSFET	(6)
1c)	Explain the second breakdown phenomena in Power BJT	(3)
2a)	Explain the switching characteristics of a power MOSFET	(7)
2b)	With neat diagram, explain the working principle of an isolated full-bridge DC-	
	DC converter.	(8)
3a)	Explain the working of a non-isolated buck DC-DC converter. Also obtain the	
	expression for the output voltage in terms of duty-ratio and input voltage.	(7)
3b)	With neat block diagram, explain the working of an isolated multiple output	
	switched mode power supply	(6)
3c)	Compare the linear regulated power supply with a switched mode power supply	(2)
	PART B	
	Answer any two full questions, each carries 15 marks.	
4a)	With neat diagram, explain the working principle of a full-bridge square wave	$\langle 0 \rangle$
	inverter with RL load. Indicate the commutation sequences of the devices.	(8)
4b)	The single-phase full bridge inverter has a resistive load of R=10 Ω and the dc	
	input voltage is Vs=220 V. Determine (a) the rms output voltage at the	(7)
	fundamental frequency $Vo_1(rms)$; (b) The output power P_o	
5a)	Explain the working principle of a space vector PWM inverter.	(9)
5b)	Explain the principle of measurement of resistance using Wheatstone	
	bridge.	(6)
6a)	Explain the principle of measurement of capacitance using Schering's bridge.	(6)
6b)	Explain the static characteristics of a measuring instrument	(9)
		. /

D

E192098

PART C

Answer any two full questions, each carries 20 marks.

7)	Explain the working principle of (i) Capacitance transducer (ii) Hall Effect	
	Transducer (iii) Proximity Transducer	(20)
8a)	Explain the working principle of a capacitor microphone	(6)
8b)	Explain the working principle of Audio Power meter	(6)
8c)	With neat block diagram, explain the working principle of spectrum analyzer	(8)
9a)	Explain the working principle of digital voltmeter	(8)
9b)	With neat block diagram, explain the working principle of Logic analyzer	(12)

13