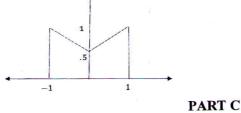
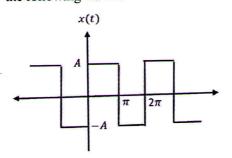
E192029


Reg No.:		:Name:	-
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019			
Course Code: EE307			
Course Name: SIGNALS AND SYSTEMS			
Max. Marks: 100 Duration: 3 Hours PART A			
		Answer all questions, each carries5 marks.	Marks
1		Define unit ramp function. Plot $r(t)$ and $x(t) = -4r(t)$	(5)
2		Find the unilateral Laplace transform and ROC of $x(t) = e^{-t}u(t) + e^{-t}u(t)$	(5)
3		If Fourier transform of $x(t)$ is $X(w)$, derive the Fourier transform of $\frac{dx(t)}{dt}$	(5)
4		Plot a) $u[n]$ and b) $x[n] = u[n+2] \times u[-n+2]$	(5)
5		Consider the sequence $x[n] = a^n$, if $x[n]$ is a causal sequence prove that the	(5)
		ROC of $X(z)$ is the exterior of the circle of radius 'a', where $X(z)$ is the Z	
		transform of x[n].	
6		State and prove the linearity and time reversal properties of Z-transform	(5)
7		Determine whether Fourier series representation is possible for the discrete time	(5)
		signals a) $x[n] = 2\cos\sqrt{5}\pi n$ and b) $x[n] = 4\cos\frac{n\pi}{2}$. If possible find the	
		fundamental period and frequency	
8		Find the frequency response $H(w)$ given, $y[n] = \frac{1}{2} \{x[n] + x[n-2]\}$	(5)
PART B Answer any two full questions, each carries10 marks.			
9	a)	Find whether the system $y(t) - at^2 x(t) + btx(t-4)$ is a) static b) linear c)	(6)
		causal and d) time invariant	
	b)	Given $x(t) = e^{-\Im t} u(t)$. Find the output of the system if the impulse response of	(4)
		the system is given by $h(t) = u(t + 3)$	
10	a)	A $1k\Omega$ resistor is connected in series with $200\mu F$ capacitor. Using Laplace	(6)
		transform find the voltage across the capacitor $y(t)$ if the voltage input is	

Page 1 of 3

D


E192029

$$x(t) = \frac{3}{5}e^{-2t}u(t) \text{ with the initial condition } y(0) = -2$$

b) Consider and LTI system described by the differential equation (4)
$$\frac{dy(t)}{dt} + 5y(t) = \frac{d^2x(t)}{dt^2} + \frac{dx(t)}{dt} - 2x(t). \text{ Find the transfer function of the inverse}$$

system and find out whether a stable and causal inverse system exists.
11 a) Using bilateral Laplace transform find the ROC of the signal $x(t) = e^{-b|t|}$ for a) (6)
 $b>0$ and b) $b<0$
b) For $x(t)$ given below, plot $x(-2t-1)$ (4)

Answer any two full questions, each carries10 marks.

12 a) Find the exponential Fourier series and plot the magnitude and phase spectrum of (10) the following waveform.

- 13 a) Define sampling theorem. With the help of frequency spectrum explain signal (6) reconstruction is possible only if sampling frequency is $f_s \ge 2f_m$
 - b) Using Fourier transform property find the Fourier transform of (4) $x(t) = e^{-3t}u(t-2)$
- 14 a) Using graphical method find the convolution of $x[n] = \{1,3,3,2\}$ and (6) h[n] = u[n] - u[n-4]

Page 2 of 3

D

E192029

b) The impulse response of a system is given by $h[n] = 3^n u[-n]$. Find whether the (4) system is causal, stable and dynamic

PART D

Answer any two full questions, each carries 10 marks.

15 a) Determine the causal signal x[n], if the Z-transform of the signal is given by (6)

$$X(z) - \frac{1}{(1+z^{-1})(1+z^{-1})^2}$$

- b) An LTI system has the impulse response $h[n] = \left(\frac{1}{2}\right)^n u[n]$. Determine the input (4) of the system if the output is $y[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{-1}{2}\right)^n u[n]$
- 16 a) Find the Z-transform and ROC of $x[n] = n\left(\frac{-1}{2}\right)^n u[n] * \left(\frac{1}{4}\right)^{-n} u[-n]$. Symbol * (6) represents convolution
 - b) If a discrete time periodic signal has periodicity N, write its Fourier series (4) representation. Write down any three differences between continuous time and discrete time Fourier series
- 17 The impulse response of a discrete time system is given by (10) $h[n] = \frac{1}{2}\delta[n] + \delta[n-1] + \frac{1}{2}\delta[n-2]$. Find the system frequency response H(w) and plot the magnitude and frequency spectra
