APJ ABDULKALAM TECHNOLOGICAL UNIVERSIO 08 PALAKKAD CLUSTER

(Pages: 2)

Q. P. Code : CSP0819211A-I

THIRD SEMESTER M. TECH. DEGREE EXAMINATION December 2019

Branch: ELECTRONICS AND COMMUNICATION ENGINEERING Specialization: COMMUNICATION ENGINEERING AND SIGNAL PROCESSING

Name: Reg. No:.

08EC7211(A) SIGNAL COMPRESSION THEORY AND METHODS

(Common to Communication Engineering and Signal Processing and Electronics & Communication Engineering)

Time:3 hours

Max. marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1.a	Let C be a code with N codewords with lengths l_1, l_2, \ldots, l_N . What is the condition for C to be uniquely decodable. Elucidate your answer with an example.	3
	Answer b or c	
b	State and Prove source coding theorem	6
c	Write the comparison between Lossy Compression and Lossless Compression	6
Q.no.	Module 2	Marks
Q.no. 2.a	Module 2 Write properties of run-length coding.	Marks 3
Q.no. 2.a	Module 2 Write properties of run-length coding. Answer b or c	Marks 3
Q.no. 2.a b	Module 2Write properties of run-length coding.Answer b or cCode the following sequence using LZW algorithm.Given sequence isWED\$WE\$WEE\$WEB\$WET and the initial dictionary is\$:1,B:2,D:3,E:4,T:5,W,6	Marks 3 6

Q.no.	Module 3	Marks
3.a	Calculate the rate distortion function R(0) for a binary source	3
	Answer b or c	
b	Calculate the Rate distortion function for a Gaussian source	6
c) State and prove Rate Distortion theorem	6
	Madula 4	Marks
Q.no.	Module 4	2
4. a	What is A-law companding? Explain	3
	Answer b or c	
b	Write a short note on differential encoding schemes	6
c	Explain in detail about the vector quantization and structures for VQ	6
O.no.	Module 5	Marks
5.a	Write the properties of discrete cosine transform.	4
	Answer b or c	
b	Give the algorithms of the Karhunan-Loeve Transform.coding method	8
c	Discuss on basic Subband Coding algorithm.	8
O no	Module 6	Marks
Q.110.	Encodere class approaches the data compression standards. Elucidate their most important	4
6.a	features	•1
	Answer b or c	
b	Compare the data compression standards Zip & Gzip.	8
c	Give the classification of speech coders. Explain the design procedure of a CELP Vocoder	8

•

2