D

NSA192008

Pages A

	118/30/2018/18/	5
	12/2/2/2/	77
Reg No.:	Name:	1
10g 110		

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2019

Course Code: EST 130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING
PART I: BASIC ELECTRICAL ENGINEERING

(2019-Scheme)

Max. Marks:50

7

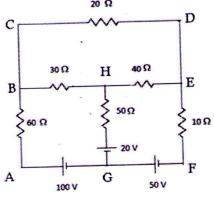
Duration: 90 min

PART A

Answer all questions, each carries 4 marks.

- Define the terms i) mmf ii) magnetic field strength iii) magnetic flux and iv) magnetic flux density.
- 2 State and explain i) Faraday's laws and ii) Lenz's law.
- 3 State and explain Kirchhoff's laws with examples
- Explain the advantage of three phase system of power supply compared to single phase system of power supply.
- When an alternating voltage of (80+j60) V is applied to a circuit, the resulting current flow is (-4+j10)A. Find the impedance, power consumed and the phase angle of the circuit.

(5x4=20)

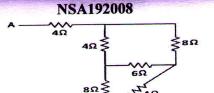

(10)

PART B

Answer one full question from each module, each question carries 10 marks

Module-I

6 Calculate the current in each branch of the following circuit using mesh analysis?



OR

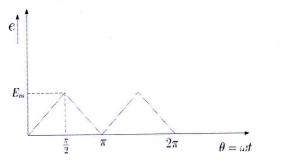
Using star-delta transformation, determine the equivalent resistance R_{AB}

(10)

Pages:4

(10)

(10)


(10)

Module-II

- 8 An alternating current varying sinusoidally with a frequency of 50Hz has an rms value of 20A.
 - i)Write down the equation for the instantaneous current
 - ii) Find the instantaneous value of current at 0.0025s.
 - iii)Find the instantaneous value of current 0.125s after passing through a positive maximum value
 - iv) At what time, measured from a positive maximum value, will the instantaneous current be 14.14 A?

OR

Determine the average and rms values of the triangular voltage wave having maximum value E_m volt as shown in figure.

Module-III

Two impedances Z₁ and Z₂ when connected separately across a 220V, 50 Hz supply, consume 300W and 150W at a power factor of 0.4 lagging and 0.7 leading respectively. When the two impedances are connected in series across the same supply, find total power consumed and overall power factor.

OR

A balanced three phase load has per phase impedance of (30+j50) Ω. If the load is connected across 400V, 3 phase supply, find (i) phase current (ii) line current and (iii) power supplied to load when it is connected in (a) star (b) delta.

(4)

(6)

(5)

(5)

ש		NSA192008 Pa	ages:4
Re	eg No	.:Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 201	9
	Co	Course Code: EST 130 purse Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEE PART II: BASIC ELECTRONICS ENGINEERING (2019-Scheme)	RING
M	ax. N		on: 90 min
		PART A	
		Answer all questions, each carries 4 marks.	
1		What are the different types of capacitors? Give any two applications of capacitors.	
2		Describe the forward characteristics of a diode?	
3		Draw the block diagram of a public address system and write the role of each block.	
4		Explain the working of a bridge rectifier.	
5		Explain the concept of cells in cellular communication.	(5x4=20)
		PART B	
		Answer one full question from each module, each question carries 10 mark	S
6	a)	Module-IV Explain the formation of potential barrier in a PN junction diode.	(4)
	b)	What do you understand by Avalanche breakdown? Draw and explain the reverse V-I characteristics of a diode.	(6)
		OR	
7		Explain the working of an NPN transistor. Describe with suitable sketches the input and output characteristics of an NPN transistor. Module-V	(10)
8	a)	Draw the circuit diagram of an RC coupled amplifier and explain its frequency response.	(6)
	b)	Narrate how capacitor filter eliminate ripples from the output of a rectifier.	(4)
		OR	120

Module-VI

10 a) What are the merits of AM compared to FM. The carrier amplitude of a given AM wave is 5V and the message signal amplitude is 3V. Find the modulation index. b) Explain the block diagram of a super heterodyne receiver.

a) What is the need of biasing? Draw the potential divider biasing circuit?

b) Explain the working of a simple zener voltage regulator.

OR

D 11	a)	NSA192008 Describe the principle of an antenna.	Pages:4
		With necessary block diagram explain the working of a GSM system	(3)
	****	(7)	