

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

| Q. P. Code: IRA0819321-1 |                                                                                                                                                                                                                                             | (Pages:                                                                                              | 2) Name:                                           |                |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|--|
|                          |                                                                                                                                                                                                                                             |                                                                                                      | Reg. No:                                           |                |  |
|                          | FIRST SEMESTER M.TI                                                                                                                                                                                                                         | ECH. DEGREE EXA                                                                                      | AMINATION December                                 | 2019           |  |
| Branch                   | n: Mechanical Engineering                                                                                                                                                                                                                   | Specializat                                                                                          | Specialization: Industrial Automation and Robotics |                |  |
|                          | 08ME6321 ROB                                                                                                                                                                                                                                | OT KINEMATICS                                                                                        | S AND DYNAMICS                                     |                |  |
| Time: 3                  | Hours                                                                                                                                                                                                                                       |                                                                                                      |                                                    | Max. Marks: 60 |  |
|                          |                                                                                                                                                                                                                                             | Answer all six question                                                                              | ons.                                               |                |  |
| Q. No.                   | · .                                                                                                                                                                                                                                         | Module 1                                                                                             |                                                    | Marks          |  |
| 1. a                     | What is meant by a work en                                                                                                                                                                                                                  | velope?                                                                                              |                                                    | 3              |  |
|                          |                                                                                                                                                                                                                                             | Answer b or c                                                                                        |                                                    |                |  |
| b                        | Using neat diagram explain the structure of a cylindrical coordinate robot.  6 Indicate the various movements of the joints and sketch work volume the robot.                                                                               |                                                                                                      |                                                    |                |  |
| c                        | Draw the kinematic diagram of a spherical wrist and describe its functioning.  6 What are the DOF of the Spherical wrist?                                                                                                                   |                                                                                                      |                                                    |                |  |
| Q. No.                   | 9                                                                                                                                                                                                                                           | Module 2                                                                                             |                                                    | Marks          |  |
| 2. a                     | Write general D-H transformation matrix from the frame {i} to frame {i-1}.  3 List the Link parameters associated with this transformation.                                                                                                 |                                                                                                      |                                                    |                |  |
|                          |                                                                                                                                                                                                                                             | Answer b or c                                                                                        |                                                    |                |  |
| b                        | Sketch a 3 link planar robot with link lengths $L_1$ , $L_2$ , $L_3$ and joint angles $\theta_1$ , $\theta_2$ and $\theta_3$ . Assign link frames using DH-convention, make link parameter table and obtain its forward kinematic equation. |                                                                                                      |                                                    |                |  |
| c .                      | The forward kinematic equa                                                                                                                                                                                                                  | ${}_{2}^{0}T = \begin{bmatrix} c_{12} & -s_{12} & 0\\ s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{bmatrix}$ | $egin{array}{c} c_1L_1 \ s_1L_1 \ 0 \end{array}$   | 6              |  |
|                          |                                                                                                                                                                                                                                             |                                                                                                      |                                                    |                |  |
| Q. No.                   | *                                                                                                                                                                                                                                           | Module 3                                                                                             |                                                    | Marks          |  |
| 3. a                     | Explain any 3-industrial applications of Pick and Place robots.                                                                                                                                                                             |                                                                                                      |                                                    | 3              |  |
|                          |                                                                                                                                                                                                                                             | Answer b or c                                                                                        |                                                    |                |  |

b What you meant by dexterous workspace and reachable workspace. Using the 6 sketches of a two link planar robot list the dexterous workspace and reachable workspace when (i)  $L_1 = L_2$  and (ii) when  $L_1 > L_2$ . c With a neat sketch describe triangulation technique used in robotics for contour mapping or range detection. Q. No. Module 4 Marks 5. a What is a holonomic constraint? Give an example. 3 Answer b or c **b** Develop Dynamics of a simple 2 DOF planar robotic arm using Newton-Euler equation. c Write the Lagrange's equation of motion. Develop the dynamics of a single link robot using Lagrange's equation of motion. Q. No. Module 5 Marks 4. a Define redundancy in robotic manipulators. What are advantageous of 4 redundant manipulators? Give the minimum DOF of a special redundant manipulator Answer b or c **b** What is a Stewart - Gough platform? Using neat sketch explain the working of Stewart - Gough platform. c Using a neat sketch describe the functioning of a 3 × RPR planar parallel 8 mechanism. Q. No. Module 6 Marks 6. a How Robotic End effectors are different from a manipulating tool? Give 4 examples. Answer b or c b With a neat sketch describe the working of two fingered robotic gripper. How 8 will you determine the gripper force for lifting a object weighing 1 N using a 2 fingered robotic gripper? c Describe the salient features a robot performing assembly operations in an industry.