E192065

Pages:3



# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DEC 2019

Name:

## **Course Code: EE303**

# **Course Name: LINEAR CONTROL SYSTEMS**

| Max. M                                                         | larks: 100 Duration: 3                                                                         | <b>Duration: 3 Hours</b> |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|--|--|
|                                                                | PART A<br>Answer all questions, each carries 5 marks.                                          | Marks                    |  |  |
| 1                                                              | Explain Mason's gain formula?                                                                  | (5)                      |  |  |
| 2                                                              | Obtain the unit step response of first order system?                                           | (5)                      |  |  |
| 3                                                              | A unity feedback system has an open loop transfer function $\frac{20(s+5)}{s^2(s+0.1)(s+3)}$ . | (5)                      |  |  |
|                                                                | Determine steady state error for unit parabolic input?                                         |                          |  |  |
| 4                                                              | Explain the effect of adding poles and zeros on root locus?                                    | (5)                      |  |  |
| 5                                                              | Sketch the bode plot for given $G(s)H(s) = \frac{10}{s(s+2)}$ without using semi log sheet?    | (5)                      |  |  |
| 6                                                              | Explain about frequency domain specifications?                                                 | (5)                      |  |  |
| 7                                                              | Draw the polar plot of type 0 second order system?                                             | (5)                      |  |  |
| 8                                                              | Explain transportation lag and non-minimum phase systems?                                      | (5)                      |  |  |
| PART B<br>Answer any two full questions, each carries10 marks. |                                                                                                |                          |  |  |

9 a) Write the differential equations governing the mechanical system and hence (6) draw the electrical analogous circuit using F-V analogy and F-I analogy



b) Derive the transfer function of an armature controlled dc motor with block (4) diagram?

### Page 1 of 3

## 10 a) Obtain the overall transfer function using block reduction techniques?



- b) What are the standard test signals used for time domain analysis? (4)
- a) Derive the expression for maximum peak overshoot, rise time and peak time of a (6) second order system for a step input?
  - b) Explain the construction and working principle of a synchro transmitter? (4)

#### PART C

## Answer any two full questions, each carries10 marks.

- 12 a) Evaluate the static error coefficients and steady state error for a unity feedback (6) system having a forward path transfer function  $\frac{50}{s(s+10)}$  for the input  $r(t)=1+2t+t^2$ 
  - b) Explain important rules for root locus? (4)
- 13 Sketch the root locus for a unity feedback system with open loop transfer (10) function  $\frac{k}{s(s+2)(s+3)}$  and find the range of k for the system to exhibit sustained

oscillations?

- 14 a) Find the location of roots of the characteristic equation (5)  $s^{6}+4s^{5}+3s^{4}-16s^{2}-64s-48=0$  in LHS, RHS and imaginary axis.
  - b) Determine (i) type (ii)error constants (iii) steady state error for the parabolic (5) input if the open loop transfer function is  $\frac{12(s+2)}{s^2(s^2+7s+12)}$

## Page 2 of 3

2

(6)

## E192065

В

2

## PART D

|    |    | Answer any two full questions, each carries 10 marks.                                    |      |
|----|----|------------------------------------------------------------------------------------------|------|
| 15 | a) | Sketch the polar plot for the following transfer function $\frac{10}{s(1+s)(1+0.05s)}$ . | ( 6) |
|    | b) | Explain gain margin and phase margin of a system using Bode plot?                        | (4)  |

Find the value of open loop gain k for  $G(s)H(s) = \frac{k}{s(1+0.1s)(1+s)}$  so that the (10) system has a) phase margin of 60° b) gain margin 15 dB using Bode plot

17 For the system shown in figure determine the stability using Nyquist plot. (10)

