| Α      | E192010                                    | Pages:3            |
|--------|--------------------------------------------|--------------------|
|        |                                            | FENGG. COLLAG      |
| Reg No | Name:                                      |                    |
|        | APJ ABDUL KALAM TECHNOLOGICAL U            | NIVERSITY          |
| ]      | FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R | &S), DECEMBER 2019 |
|        | Course Code: CS301                         | PUTHURUTH' M       |

## **Course Name: THEORY OF COMPUTATION**

Max. Marks: 100

6

**Duration: 3 Hours** 

3

6

# PART A

|   | Answer all questions, each carries 3 marks.                                   | Marks |
|---|-------------------------------------------------------------------------------|-------|
| 1 | Define nondeterministic finite automata(NFA). Draw the NFA for the language   | 3     |
|   | $L=\{a^{n} b^{m}   n, m \ge 1\}$                                              |       |
| 2 | Convert the following NFA to DFA.                                             | 3     |
|   |                                                                               |       |
| 3 | Write regular expression for the language L= $\{1^n 0^m   n \ge 1, m \ge 0\}$ | 3     |

4 Differentiate Moore machine from Mealy machine. Write the tuple 3 representation for both machines.

#### PART B

# Answer any two full questions, each carries 9 marks.

- 5 a) Write the notation for the language defined by a DFA. Write a string belong to 3 the language  $L^3$  if  $L=\{0,1\}$ 
  - b) Construct NFA without  $\epsilon$  transitions from the following NFA. M=({q<sub>0</sub>, q<sub>1</sub>, 6 q<sub>2</sub>}, {a, b, c},  $\delta$ , q<sub>0</sub>, {q<sub>2</sub>}) and  $\delta$ (q<sub>0</sub>, a) = {q<sub>0</sub>},  $\delta$ (q<sub>0</sub>, b) = {q<sub>1</sub>},  $\delta$ (q<sub>0</sub>, c) = {q<sub>2</sub>}  $\delta$ (q<sub>1</sub>,  $\epsilon$ ) = {q<sub>0</sub>},  $\delta$ (q<sub>1</sub>, a) = {q<sub>1</sub>},  $\delta$ (q<sub>1</sub>, b) = {q<sub>2</sub>},  $\delta$ (q<sub>2</sub>,  $\epsilon$ ) = {q<sub>1</sub>},  $\delta$ (q<sub>2</sub>, a) = {q<sub>2</sub>},  $\delta$ (q<sub>2</sub>, c) = {q<sub>0</sub>}.

$$\{2, \epsilon\} - \{q_1\}, o(q_2, a) - \{q_2\}, o(q_2, c) = \{q_0\}.$$

- a) State Myhill-Nerode Theorem.
- b) Minimize the following DFA.

| δ   | a  | b  |
|-----|----|----|
| P0  | P0 | P1 |
| P1  | P2 | P1 |
| P2  | P3 | P1 |
| *P3 | P3 | P4 |
| *P4 | P5 | P4 |

E192010

Pages:3





Design an  $\epsilon$ -NFA for the regular expression (0+1)\*01 b) PART C

## Answer all questions, each carries 3 marks.

| 8  | Write the conditions for a pushdown automaton to be considered as       | 3 |
|----|-------------------------------------------------------------------------|---|
|    | deterministic.                                                          |   |
| 9  | Which are the methods to accept a string in a PDA? Whether both type of | 3 |
|    | PDAs can define the same language. Justify your answer.                 |   |
| 10 | Convert the following grammar to Chomsky Normal Form.                   | 3 |
|    | $S \rightarrow 0S0 1S1  \epsilon$                                       |   |
| 11 | Whether the following grammar is ambiguous?                             | 3 |
|    |                                                                         |   |

E -> E + E | E \* E | II > 0|1|a|b

#### PART D

### Answer any two full questions, each carries 9 marks.

| 12 | a) | Verify that the following languages is not regular | : |  | 4.5 |
|----|----|----------------------------------------------------|---|--|-----|
|    |    | $\{a^{n}b^{2n} \mid n > 0\}$                       |   |  |     |
|    |    |                                                    |   |  |     |

- 4.5 Which of the following operations are closed under regular sets. Justify your b) answer.
- i) Complementation ii) Set difference iii) string reversal iv) Intersection 4.5 Give a CFG for the language N(M) where  $M = (\{p,q,r\}, \{0, 1\}, \{Z, X_0\}, \{Z,$ 13 a)  $\delta$ , q<sub>0</sub>, Z, r) and  $\delta$  is given by  $\delta(p, \epsilon, X_0) = \{(q, ZX_0)\}, \delta(q, \epsilon, X_0) = \{(r, \epsilon)\}, \delta(q, \epsilon) \in \{0, 0\}, \delta(q, \epsilon)\}$  $(1, Z) = \{(q, ZZ)\}, \delta(q, 0, Z) = \{(q, \epsilon)\}.$

Find the Greibach normal form grammar equivalent to the following CFG: 4.5 b)  $S \rightarrow AB$  $A \rightarrow BS|1$ 

 $B \rightarrow SA|0$ 

Design a PDA to accept the language  $\{0^{2n}1^n \mid n \ge 1\}$ . 14 a)

Find a CFG without  $\epsilon$ -productions equivalent to the grammar defined by 4.5 b)  $S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b/\epsilon, C \rightarrow D/\epsilon, D \rightarrow d$ 

## PART E

#### Answer any four full questions, each carries 10 marks.

| 15 | a) | State Pumping lemma for CFLs. Write the applications of pumping lemma for | 4 |
|----|----|---------------------------------------------------------------------------|---|
|    |    | CFL s.                                                                    |   |
|    | b) | Check whether $L = \{a^i b^i c^i \mid i > 0\}$ belong to CFL or not.      | 6 |
| 16 | a) | Discuss about Multitape Turing Machines. Explain informally how they can  | 5 |

Discuss about Multitape Turing Machines. Explain informally how they can 16 a)

A

4.5

4.5

|    |    | simulate the moves of a Turing Machine                                                |    |
|----|----|---------------------------------------------------------------------------------------|----|
|    | b) | Write a note on Universal Turing machines.                                            | 5  |
| 17 | a) | How to identify deterministic Turing machine from nondeterministic TM                 | 3  |
|    | b) | Write notes on the following:                                                         | 7  |
|    |    | i) decidable and undecidable problems                                                 |    |
|    |    | ii) Halting Problem of Turing machine.                                                |    |
| 18 | a) | Write the properties of recursive languages and recursively enumerable                | 3  |
|    |    | languages.                                                                            |    |
|    | b) | Write the Chomsky hierarchy of languages. Prepare a table indicating the              | 7  |
|    |    | automata and grammars for the languages in the Chomsky Hierarchy.                     |    |
| 19 | a) | Define Turing machine [Write the tuple representation for TM].                        | 5  |
|    | b) | Design a Turing machine to identify the strings belong to the language $L=\{0^n\}^n$  | 5  |
|    |    | n>0}.                                                                                 |    |
| 20 |    | Design the Turing machine to recognize the language: $\{0^n 1^n 0^n \mid n \ge 1\}$ . | 10 |
|    |    | • ****                                                                                |    |

A