NSA192002

D	eg	0	•
•	E P		

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION(2019 SCHEME), DECEMBER 2019

Course Code: PHT100

PART A

Course Name: ENGINEERING PHYSICS A

(2019-Scheme)

Max. Marks: 100

stretched string.

Duration: 3 Hours

Answer all questions, each carries 3 marks.

	1		List any six points to compare electrical oscillator with a mechanical	(3)		
	2		oscillator. Distinguish between transverse and longitudinal waves. Give one example	(3)		
			for each.			
	3		When a medium of $\mu \neq 1$ is introduced in the Newton's ring set up, what	(3)		
			happens to the diameter of interference pattern? Explain it with the help of			
			relevant equation.			
	4		Give 3 differences between interference and diffraction.	(3)		
	5		State Heisenberg's Uncertainty principle and write the three uncertainty			
	•		relations.			
	6		Explain the optical properties of nanomaterials.	(3)		
	7		Distinguish between magnetic induction and magnetising field.			
	8		Derive the equation of continuity for time varying fields.			
	9		Show that superconductors are perfect diamagnets.			
	10		Distinguish between step index and graded index fibres.	(3)		
			PART B			
•			Answer one full question from each module, each question carries 14 marks			
	11	a)	Module-I Set up the differential equation for a forced harmonic oscillator and solve it.	(10)		
		b)	A transverse wave on a stretched string is described by	(4)		
		$y(x,t)=2\sin(20t+0.021x+\pi/6)$ where x and y are in cm and t is in second.				
			Obtain (1)Amplitude (2)Initial phase (3)speed (4)frequency			
	12	a)	Derive an expression for the fundamental frequency of a transverse wave in a	(10)		

b) A sitar wire is under tension of 40 N and length of the bridge is 80 cm. A 10 m (4)

B

NSA192002

sample of that wire has mass **1.2g**. Find the speed and fundamental frequency of transverse wave on the wire.

Module-II

- 13 a) With necessary diagram, write the formation of interference pattern in an air (10) wedge and derive an expression for the diameter of a thin wire.
 - b) A monochromatic light of wavelength 5893 Å is incident normally on a soap (4) film of $\mu = 1.42$. What is the least thickness of the film that will appear dark by reflection ?
- 14 a) Derive the grating equation and describe an experiment to determine the (10) wavelength of light. Define resolving power of a grating with expression.
 - b) A grating has 6000 lines/cm. Find angular separation between two (4) wavelengths 577nm and 579 nm in the second order.

Module-III

- 15 a) Derive an expression for energy eigen values and normalised wave function (10) for a particle in a box of width L.
 - b) Calculate the separation between the two lowest energy levels of an electron (4) in a one dimensional box of width 4\AA in joules. Given $m_e = 9.1 \times 10^{-31} \text{ kg}$; $h=6.625 \times 10^{-34} \text{ Js}$
- 16 a) Write a note on quantum confinement and based on this explain nano sheets, (10) nano wire and quantum dots.
 - b) Mention any four applications of nanotechnology. (4)

Module-IV

- 17 a) State Gauss' law in magnetism, Ampere's circuital law, faraday's laws of (10) electromagnetic induction and Lenz's law. Give their equations.
 - b) A magnetising field of 1800 A/m produces a magnetic flux of 3×10^{-5} Wb in (4) an iron bar of cross – sectional area 0.2 cm². Calculate the permeability.
- 18 a) Starting from Maxwell's equations derive the expression for the velocity of (10) electromagnetic waves in vacuum.
 - b) State and explain Poynting's theorem. (4)

Module-V

- 19 a) Explain the characteristics of Type I and Type II superconductors with (7) appropriate diagrams and examples.
 - b) Discuss BCS theory of superconductivity. Give any four applications of (7)

superconductivity.

- 20 a) Explain construction and working of a solar cell and draw its I-V (10) characteristics. Mention any two applications of solar cells.
 - b) The numerical aperture of an optic fibre is 0.295 and refractive index of core (4) is 1.54. Calculate refractive index of cladding and acceptance angle.
