APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

Q. P. Code : CS-1A-19-1

(Pages: 3)

lame:

Reg. No:

FIRST SEMESTER M.TECH. DEGREE EXAMINATION DEC 2019 Branch: Computer Science and Engineering Specialization: Computer Science and Engineering 08CS6011: OPERATING SYSTEM DESIGN

i me:5	nours Max.	marks: 60	
	Answer all six questions.		
Mod	lules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each q	juestion.	
Q.no.	Module 1	Marks	
1.a	What happens when an interrupt occurs	3	
Answer b or c			
b	Illustrate the flow of control during a system call	6	
с	With a neat sketch, explain the flow of control during process switching	6	
Q.no.	Module 2	Marks	
2.a	Draw a resource allocation graph with two processes and two resourcesi) where the two processes are deadlocked.ii) where both resources are allocated but the processes are not deadlocked	3	
	Answer b or c		
b	Explain the relationship between signaling, rendezvous and producer consumer problem	6	
C	Discuss in detail about the strategies for dealing with deadlocks	6	
Q.no.	Module 3	Marks	
3.a	Suppose that your memory management hardware supports neither reference bits nor modified bits, but does support read-only/read-write bits and valid/invalid bits. Explain how you can use the existing hardware to implement a software	3	

solution that will emulate the functionality of the other bits.

Answer b or c

- **b** Consider a reference string 1, 2, 3, 4, 2, 5, 6, 2, 3, 2, 1, 6, 7; and a system with only 4 frames, pure demand paging, and all frames initially empty.
 - i. How many page faults would occur with a FIFO replacement scheme? What are the identities of pages in the frames when the reference string has completed?
 - ii. How many page faults would occur with a perfect LRU replacement scheme? What are the identities of pages in the frames when the reference string has completed?
- ^c With suitable example explain the List and Bitmap methods of keeping track of blocks. List the advantages of each methods.

Module 4

Marks 3

6

6

6

4.a What are the various ways in which primary memory can be used to enhance performance of disks?.

Answer b or c

- b Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 143, and the previous was at cylinder 125. The queue of pending requests, in FIFO order, is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for FCFS, SSTF, SCAN.
- c What is the average time to read or write a 512-byte sector for a typical disk rotating at 7200 RPM? The advertised average seek time is 8ms, the transfer rate is 20MB/sec, and the controller overhead is 2ms. Assume that the disk is idle so that there is no waiting time.

Q.no.

Q.no.

Module 5

Marks

8

5.a Give a scenario where choosing a large file system block size might be a benefit;4 give an example where it might be a hindrance.

Answer b or c

- b List the main data structures in a file system and with a neat sketch show how
 8 they are connected to each other. Show the control flow for open system call
- c Explain how file blocks are located on disk

Q.no.	Module 6	Marks	
6.a	List the types of protection failures that can happen to the resources in a computer system	4	
Answer b or c			
b	Discuss the naming of objects. Write an algorithm for creating unique names without race condition.	8	
c	Explain the mechanism for protecting hardware and software resources.	8	