E1133

B

1

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Name

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100

Duration: 3 Hours

PART A

Mar Answer any two full questions, each carries 15 marks. ks a) State Ampere's circuit law. (3)b) Derive an expression for magnetic energy of a continuous distribution of current in (7)a volume. c) Find the potential function and electric field intensity for the region between (5) concentric right circular cylinders, where V=0 at r=1mm and V=100 V at r=30mm. (7)

- 2 State and derive Gauss's law in point form. a)
 - A square loop of 4m side is placed in xy-plane with its centre at the origin and (8)b) sides long the coordinates axes. If the magnetic flux density in the region is given $B = (0.28a_x - 0.3a_y + 0.4a_z)e^{-0.1t} Wb/m^2$. Find the induced EMF in the loop at t=10 S

3	a)	List all Maxwell's equations in integral form	(4)
	b)	Derive the solution of uniform plane wave in lossy dielectric medium.	(6)
		· · · · · · · · · · · · · · · · · · ·	

c) An air filled parallel plate capacitor is with following specification, area= 2 m^2 and (5) spacing between the plates=0.1m. If a voltage $V = 20cos10^3 t$ is applied across the capacitor plates, find the magnetic field between the capacitor plates.

PART B

Answer any two full questions, each carries 15 marks.

4	a)	What is Snell's law?			
	b)	Derive an expression for reflection coefficient of a plane wave under oblique	(5)		
		incidence with parallel polarization at a dielectric interface.			
	c) Define reflection coefficient and VSWR of a transmission line and de				
		relation between reflection coefficient and VSWR.			

-

Nel Fortward	5	a)	Derive an expression for net outward power flow associated with an	(10)
т ние.			electromagnetic wave, from a surface	
		b)	State phase velocity of a wave	(5)
W Styles	6	a)	Draw the circuit of small section of transmission line of length Δx and label the	(3)
	•		circuit parameters	
the state		b)	Derive the current and voltage equation of a transmission line.	(7)
a <u>5</u> 114 - 1 2 1		c)	A lossless transmission line has primary constant L= 0.01μ H/m, C=100pF/m. Find	(5)
i, ar			the characteristic impedance of the line.	
新教教学家			PART C	
a an the stand of the state			Answer any two full questions, each carries 20 marks.	
	7	a)	What are distributed elements	(4)
antin parta a		b)	Derive the expression for input impedance of a loss less transmission line	(8)
:		c)	A transmission line has primary constants R=0.1 Ω /m, G=0.01/m, L=0.01 μ H/m	(8)
			and C=100pF/m. Find the characteristic impedance of the line at 2 GHz. Find the	
- *s			following	
et e			i) Reflection coefficient at the load end when it is connected to a load	
			impedance $10+j20\Omega$.	
-1 <u>.</u>			ii) The reflection coefficient at a distance of 20cm from load.	
	8	a)	Derive the expressions for Transverse magnetic (TE) mode propagation in a	(10)
			parallel plane wave guide.	
		b)	A load impedance 90- j 25 is to be matched to 50Ω using single stub matching	(10)
the second of			find the length and location of stub using smith chart.	
i i i i i i i i i i i i i i i i i i i	9	a)	Derive the expressions for TE mode in a rectangular wave guide	(10)
		b)	The longitudinal electric field for TM_{11} mode is given by	(7)
а - ^с а. ,			$E_z = \sin 5x \sin 8y e^{-j\beta z} V/m$ Find the cut off frequency of the mode.	
11 18 -1 - 18 {		c)	The cross section of a rectangular wave guide is 20 cm ×5 cm. Find 3 lowest order	(3)
			mode frequencies	
\$ × (-			学::水 本	

" işa 2 cr