C1100

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Name:

THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

Duration: 3 Hours

ages: 2

PART A

		Answer any two full questions, each carries 15 marks	Marks
1	a)	Prove that the function <i>sinz</i> is analytic and find its derivative.	(7)
	b)	Under the transformation $w = \frac{1}{z}$, find the image of $ z - 2i = 2$	(8)
2	a)	Find the analytic function whose imaginary part is	(7)
		$v(x,y) = log(x^2 + y^2) + x - 2y.$	
	b)	Under the transformation $w = z^2$, find the image of the triangular region bounded by $x = 1$, $y = 1$ and $x + y = 1$.	(8)
3	a)	Show that $f(z) = \begin{cases} \frac{zRe(z)}{ z }, & z \neq 0\\ 0, & z = 0 \end{cases}$ is not differentiable at $z = 0$	(7)
	b)	Find the bilinear transformation that maps the points -1 , i , -1 onto i , 0 , $-i$.	(8)

PART B

Answer any two full questions, each carries 15 marks

4 a) Using Cauchy's integral formula, evaluate $\int_c \frac{e^z}{(z^2+4)(z-1)^2} dz$, where C is the (7) circle |z-1| = 2.

b) Evaluate
$$\int_0^{2+i} (\bar{z})^2 dz$$
 along (8)
(i) the real axis to 2 and then vertically to $2 + i$.

ii) the line 2y = x

5 a) Find all singular points and residues of the functions

(7)

(7)

(6)

(a)
$$f(z) = \frac{z - \sin z}{z^2}$$
 (b) $f(z) = \tan z$
(b) Evaluate $\int_0^{2\pi} \frac{1}{z - 2\sin \theta} d\theta$. (8)

⁶ a) Evaluate
$$\int_C \log z dz$$
 where C is the circle $|z| = 1$ (7)

b) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$
 (8)

PART C

Answer any two full questions, each carries 20 marks

7 a) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17 \end{bmatrix}$ (8)

b) Find the values of a and b for which the system of linear equations

$$x + 2y + 3z = 6, x + 3y + 5z = 9, 2x + 5y + az = b$$
 has (i) no solution

(ii) a unique solution (iii) infinitely many solutions

c) Show that the vectors $\begin{bmatrix} 3 & 4 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & -1 & 3 & 5 \end{bmatrix}$ and $\begin{bmatrix} 1 & 6 & -8 & -2 \end{bmatrix}$ (5) are linearly independent in R⁴.

$$3x + 3y + 2z = 1$$
, $x + 2y = 4$, $10y + 3z = -2$, $2x - 3y - z = 5$

$$x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$

c) Find the Eigen values and Eigen vectors of $\begin{bmatrix} 4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3 \end{bmatrix}$

- a) Diagonalize the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ (8)
- b) Define symmetric and skew symmetric matrices. Show that any real square (6) matrix can be written as the sum of a symmetric and a skew symmetric matrix.
- c) What type of conic section is represented by the quadratic form (6)

 $3x^2+22xy+3y^2 = 0$ by reducing it into canonical form.

A

9