G1032

B

Name:

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: CE403 Course Name: STRUCTURL ANALYSIS - III

Max. Marks: 100

Duration: 3 Hours

(2)

(13)

PART AAnswer any two full questions, each carries 15 marks.Marks

- 1 a) What are the assumptions in portal method of analysis?
 - b) Analyse the frame shown in figure 1 using portal method

2	a)	Explain static, external and internal indeterminacy with examples.	(5)
	b)	Explain the concept of physical approach	(5)
	c)	Define kinematic indeterminacy. Compute the kinematic indeterminacy of a rigid	(5)
		jointed frame of column height 'h' and beam span 'l' with one end fixed and other	
		end hinged, if only the beam axial deformations are neglected.	
3	a)	Compare the analysis by flexibility and stiffness matrix	(10)
	b)	Explain the formulae to find out the static indeterminacy of pin-jointed and rigid-	(5)
		jointed frames	
PART B			
		Answer any two full questions, each carries 15 marks.	
4	a)	Explain the load transformation matrix approach in flexibility method	(8)
	b)	Explain analysis of plane trusses by flexibility method	(7)

5 a) Analyse the plane frame shown in figure 2 by flexibility matrix method and draw (15)

the SFD and BMD. The bottom support is fixed and top support is roller.

6 a) Define kinematic indeterminacy. Determine the kinematic indeterminacy of the (5) following structures in Fig 3.

Fig.3

b) Analyse the truss shown in Fig. 4 (with active global coordinates, as shown) and (10) find the joint displacements, support reactions and bar forces. The truss is subjected to direct loads F1 = 50 kN; F2 = 30 kN, and a lack of fit due to bar AC being too long by 5 mm. Assume all bars to have same axial rigidity AE = 6000 kN. Use stiffness matrix method.

Fig 4

Page 2of 3

B

Pages: 3

(5)

(5)

G1032

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Discuss the procedure of Direct Stiffness Method in the matrix analysis
 - b) Analyse the continuous beam shown in figure 5 using Direct Stiffness Method (15) shown in figure and develop the BMD

Fig 5

- 8 a) Explain Direct Stiffness Method in the matrix analysis
 - b) Analyse the beam shown in figure 6 using Direct Stiffness Method shown in figure (15) and determine the member forces and moments.

Fig 6

- 9 a) Write the equation of motions corresponding to the damped and undamped free and (5) forced vibration.
 - b) Derive the equations for response of SDOF system subjected to damped free (15) vibration in 'x' direction with inertia constant m, spring constant k and damping constant c. Draw the response diagram also.