Pages: 3

Reg No.	Name: Name:	O.
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	* //
	FIRST SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019	
	Course Code: MA101	(*
	Course Name: CALCULUS	
Max. Marks: 100 Duration: 3 F		
	PART A	Montra
	Answer all questions, each carries 5 marks.	Marks
1 a)	Check the convergence of the series $\sum_{k=1}^{\infty} \left(\frac{3k-4}{4k-5}\right)^k$	(2)
b)	Find the Maclaurin series of $f(x) = \frac{1}{1+x}$, up to 3 terms	(3)
	If $z = (3x - 2y)^4$, find $\frac{\partial^4 x}{\partial x \partial y^3}$	(2)
b)	If $w = \log (\tan x + \tan y + \tan z)$ then prove that	(3)
	$\sin 2x \frac{\partial w}{\partial x} + \sin 2y \frac{\partial w}{\partial y} + \sin 2z \frac{\partial w}{\partial y} = 2$	
3 a)	Find the speed of a particle moving along the path $x = 2\cos t$, $y = 2\sin t$, $z = t$	(2)
	at $t = \pi/2$	
b)	If $y'(t) = \cos t \ i + \sin t j$; $y(0) = i - j$. Find $y(t)$.	(3)
4 a)	Evaluate $\int_0^1 \int_0^{x^2} \int_0^2 dy dz dx$	(2)
b)	Evaluate $\iint xy dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and lying	(3)
5 a)	in the first quadrant. Show that $F(x, y) = 2xy^3i + 3x^2y^2j$ is conservative.	(2)
,	_	(2)
b)	If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$ and $\vec{r} = \vec{r} $, prove that $\nabla \cdot \frac{\vec{r}}{r^3} = 0$	(3)
6 a)	Evaluate by Stoke's theorem $\oint_C (e^x dx + 2y dy - dz)$, where C is the curve	(2)
	$x^2 + y^2 = 4$, $z = 2$	
b)	Using Green's theorem evaluate $\int_C x dy - y dx$ where C is the circle $x^2 + y^2 = 4$	(3)
	PART B	
	Module 1	
	Answer any two questions, each carries 5 marks.	

- 7 Test for convergence of the series $\sum_{k=1}^{\infty} \frac{1}{(8k^2-3k)^{1/5}}$ (5)
- 8 Find the radius of convergence and interval of convergence of the power (5) $\operatorname{series} \sum_{k=0}^{\infty} \frac{(2x-1)^k}{3^{2k}} \ .$

Show that the series $\sum_{k=1}^{\infty} (-1)^k \left(\frac{k}{k+1}\right)^{k^2}$ is convergent.

(5)

Module 1I

Answer any two questions, each carries 5 marks.

- Let $w = \sqrt{x^2 + y^2 + z^2}$, where $x \cos \theta$, $y \sin \theta$, $z \tan \theta$. Find $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{4}$, using chain rule. (5)
- Find the local linear approximation L(x,y) to $f(x,y) = \ln (xy)$ at the point P(1,2). Compare the error in approximating f by L at the point P(1,2) with the distance between P and Q.
- Find relative extrema and saddle points, if any, of the function $f(x,y) = xy + \frac{8}{x} + \frac{8}{y}.$

Module 1II

Answer any two questions, each carries 5 marks.

- Find the unit tangent T(t) and unit normal N(t) to the curve (5) $x = a \cos t$, $y = a \sin t$, z = ct a >0
- Find the velocity and position vectors of the particle, if the acceleration vector (5) $a(t) = \sin t i + \cos t j + e^t k \; ; \; v(0) = k \; ; \; r(0) = -i + k \; .$
- Find the equation of the tangent line to the curve of intersection of surfaces. (5) $z = x^2 + y^2$ and $3x^2 + 2y^2 + z^2 = 9$ and the point (1,1,2).

Module 1V Answer any two questions, each carries 5 marks.

- 16 Evaluate by reversing the order of integration $\int_{0}^{a} \int_{0}^{\sqrt{a^2 y^2}} x \, dx \, dy$ (5)
- Evaluate $\iint_R xy \, dA$, where R is the sector in the first quadrant bounded by $y = \sqrt{x}$, y = 6 x, y = 0.
- Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} \hat{x} dz dx dy$

4

2 4 . k

the property

Made

Module V

Answer any three questions, each carries 5 marks.

- Find the work done by $F(x,y) = (x^2 + y^2)i xj$ along the curve

 (5) $C: x^2 + y^2 = 1$ counter clockwise from (1,0) to (0,1)
- Determine whether $F(x,y) = 6y^2 i + 12xy j$ is a conservative vector field. If (5) so find the potential function for it.
- Find the divergence and curl of the vector field $F(x,y,z) = xyz^{2}i + yzx^{2}j + zxy^{2}k$ (5)
- Prove that $\int_C (z^2 yz)i + (y^2 zx)j + (z^2 xy)k$. $d\bar{r}$ is independent of the path (5) and evaluate the integral along any curve from (0,0,0) to (1,2,3).

Module VI

Answer cay three questions, each carries 5 marks.

- Using Green's theorem evaluate $\int_{C} (xy + y^{2})dx + x^{2} dy$ where C is the boundary of the region bounded by $y = x^{2}$ and $x = y^{2}$
- Evaluate the surface integral $\iint_{\sigma} z^2 ds$, where σ is the portion of the curve $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 3
- Determine whether the vector field F(x,y,z) is free of sources and sinks. If not, locate them. (5)

$$i)F(x,y,z) = (y+z)\bar{\imath} - xz\bar{\jmath} + x^2 \sin y \,\bar{k}$$

$$ii)F(x,y,z) = x^3\bar{\imath} + y^5\bar{\jmath} + 2z^3\bar{k}$$

- Use divergence theorem to find the outward flux of the vector field $F(x,y,z) = (2x+y^2)i + xyj + (xy-2z)k \quad \text{across the surface } \sigma \quad \text{of the}$ tetrahedron bounded by x+y+z=2 and the coordinate planes.
- Using Stoke's theorem evaluate $\int_{C} \overline{F} \cdot d\overline{r}$; where $\overline{F} = xy\,\overline{\imath} + yz\,\overline{\jmath} + xz\,\overline{k}$; (5)

 C triangular goth in the plane x + y + z = 1 with vertices at (1,0,0), (0,1,0) and (0,0,1) in the time extent
