Pages 3

| keg I                    | NO.:         |                                                                                                                                               | 3/14/   |
|--------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                          |              | APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019                                                | المالية |
|                          | •            | Course Code: CS367                                                                                                                            |         |
|                          |              | Course Name: LOGIC FOR COMPUTER SCIENCE                                                                                                       |         |
| Max. Marks: 100 Duration |              | Iours                                                                                                                                         |         |
|                          |              | PART A  Answer all questions, each carries 3 marks.                                                                                           | Marks   |
| 1                        |              | Using Truth table check whether the given statement is valid or not.                                                                          | (3)     |
| 1                        |              | "If it rains there won't be cricket match and cricket will be played if no rain"                                                              | (-)     |
|                          |              | If it fains there won't be cheket match and cheket will be played if he fain                                                                  |         |
| 2                        |              | Prove $((A \rightarrow B) \rightarrow A) \rightarrow A$ in Hilbert system                                                                     | (3)     |
| 3                        |              | Convert the formula [ $(a \lor b) \land (d)$ ] into 3CNF.                                                                                     | (3      |
| 4                        |              | Draw the tree representation of the formula $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ | (3)     |
|                          |              | PART B                                                                                                                                        |         |
|                          |              | Answer any two full questions, each carries 9 marks.                                                                                          |         |
| 5                        | a)           | Explain the clausal representation of propositional formulas and the concept of                                                               | (5)     |
|                          |              | resolution.                                                                                                                                   |         |
|                          | b)           | Resolve the set of clauses, $S_1 = \{pqr, \neg q, p \neg rs, qs, p \neg s\}$ and $S_2 = \{p \neg q, q \neg r, rs, p \neg s\}$                 | (4)     |
| 6                        | <b>a)</b>    | $\neg s$ } Prove $\vdash (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]$ in Hilbert system.                  | (5)     |
| 6                        | a)<br>b)     | Explain the following cases for a Propositional logic formula i) Satisfiability ii)                                                           | (4)     |
|                          | U)           | Validity iii) Falsifiability iv) Contradiction                                                                                                | ( )     |
| 7                        | ۵)           | Give an algorithm to construct semantic tableaux for Propositional Logic                                                                      | (5)     |
| 7                        | a)           |                                                                                                                                               | (-)     |
|                          | . <b>L</b> \ | formula.  Prove that construction of semantic tableaux for a formula A in propositional                                                       | (4)     |
|                          | b)           |                                                                                                                                               | ( )     |
|                          |              | logic always terminates.  PART C                                                                                                              |         |
|                          |              | Answer all questions, each carries 3 marks.                                                                                                   |         |
| 8                        |              | Construct the formation tree for the formula $\exists x (\neg \forall y \ P(x,y) \land \neg \forall y \ P(y,x))$                              | (3)     |
| 9                        |              | Define any 3 possible interpretations for the formula $\exists x \ P(a,x)$ and find the truth                                                 |         |
| ,                        |              | value of the formula under each of the interpretations.                                                                                       | (3)     |
| 10                       |              | Explain the concept of ground resolution with an example.                                                                                     | (3)     |
| 11                       |              | What are Herbrand bases?. Give the Herbrand bases for the following set of clauses $S=\{P(a, f(x,y)), \neg P(b, f(x,y))\}$                    | (3)     |

## PART D

Answer any two full questions, each carries 9 marks.

- 12 a) What is the relevance of Binary Decision Diagrams?
  - b) Create a reduced ordered BDD for the formula  $(p \lor q) \land (\neg q \lor r)$  with an order (6) (p,q,r). Check the satisfiability of the formula.
- 13 a) Write down the algorithm for construction of semantic tableaux for first-order (5) logic.
  - b) Using tableaux check the satisfiablility of the formula  $\forall x \ (p(x) \lor q(x)) \rightarrow (\ \forall x \ (4) \ p(x) \lor \forall x \ q(x))$
- 14 a) Explain unification algorithm (4)
  - b) Check whether the following sets of clauses are unifiable with the help of unification algorithm (5)

 ${p(f(a), f(x,y,z)), \neg p(x, f(y,f(a),g(b))}$ 

If unifiable find out most general unifier σ.

## PART E

Answer any four full questions, each carries 10 marks.

- 15 a) What are the similarities and differences between PTL and LTL formulas. (4)
  - b) Explain how interpretations are defined in PTL. Define satisfiability and validity (6) of formulas in PTL.
- 16 a) Explain PTL formulas with examples. What are the operators used in PTL (5)
  - b) Check the satisfiability of the formula  $\Diamond p \land \Box q$  for the following state transition (5)



diagram given

- 17 a) Explain the algorithm for construction of semantic tableaux for LTL formulas (5)
  - b) Check the satisfiability of  $(p \land q) \land \bigcirc (\neg p \lor \neg q)$  using semantic tableaux (5)
- 18 a) Explain correctness of formulas with an example. (4)

b) Explain the axioms of Hoare Logic. (6) 19 a) Use Hoare Logic to prove partial correctness of following program (7)  $\{a \ge 0\}$ x = 0; y = 1;while  $(y \le a)$  $\mathbf{x} = \mathbf{x} + \mathbf{1};$ y = y + 2\*x + 1; $\{0 \le x^2 \le a < (x+1)^2\}$ b) How to perform program synthesis using program correctness? (3) 20 a) Explain axiom schemes and axiomatic systems in KC. (6) b) Draw the parse tree for  $\Box(\Diamond(\neg p \leftrightarrow p) \land (\Box(p \rightarrow q) \lor \neg q))$ (4)