APJ ABDULKALAM TECHNOLOGICAL UNIVERSITY 08 PALAKKAD CLUSTER

O. P. Code: PE0819252C -	- I	
--------------------------	-----	--

(Pages: 3)

Name:

Reg. No:.

SECOND SEMESTER M.TECH. DEGREE EXAMINATION JUNE 2019

Branch: Electrical Engineering Specialization: Power Electronics

08EE6252C Digital Control Systems

Time: 3 hours

Max. marks: 60

Answer all six questions.

Modules 1 to 6: Part 'a' of each question is compulsory and answer either part 'b' or part 'c' of each question.

(graph sheets may be provided)

Marks Q.no. Module 1 1.a Derive the Laplace transform of a sampled signal in terms of its continuous signal. Explain the properties of the spectrum of a sampled signal. Answer b or c 6 **b** Consider a discrete control system with feed forward gains of G₁(s) and G₂(s) connected in cascade with a sampler in between them. The feedback gain matrix is H(s). Derive the pulse transfer function of the system. Explain a procedure to obtain the same, from the given parameters. 6 c Consider the digital filter defined by $G(z) = 4(z - 1)(z^2 + 1.2z + 1) / \{(z + 0.1)(z^2 - 0.3z + 0.8)\}.$ Draw standard and parallel realisation diagrams. Obtain the corresponding state models. Compare them also.

Q.no	Module 2	Marks
•		
2.a	What is Jury's stability criterion. Compare with Routh's criterion for discrete systems.	3
	Answer b or c	
b	Obtain the steady state error coefficients and corresponding errors of the system with open loop transfer function $G(z)$.	6
c	How will you convert the transient specifications of a continuous system, to the z plane? Consider at least three specifications and explain.	6

3

6

3

6

3.a Derive the transfer function of a digital PID controller. Compare with the continuous one.

Answer b or c

b Design a digital lead compensator for the system shown in Figure 3.1. Desired specifications are phase margin 55 degrees, gain margin at least 10 dB and the static velocity error constant be 5/sec. Sampling period be 0.1 sec. Given

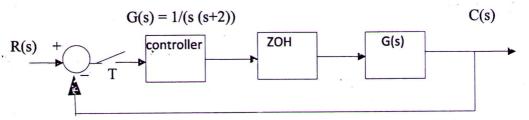


Figure 3.1.

c Consider the system shown in Figure 3.1. Design a digital controller such that the dominant closed loop poles of the system will have a damping ratio of 0.5. There should be 8 samples per cycle of damped sinusoidal oscillations. The sampling period is 0.2 sec. Given G(s) = 1/(s(s+1)).

Q.no. Module 4 Marks

4.a Derive the relationship between state and transfer function models of a discrete time system.

Answer b or c

b Obtain a state space representation of the system shown in Figure 4.1. The sampling period is T=1 sec. G(s)=1/(s(s+1)).

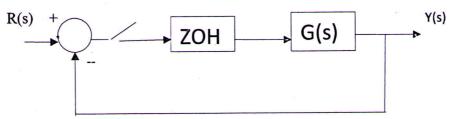


Figure 4.1.

Obtain a state space representation of the system with pulse transfer function $G(z) = (z^3 + 8z^2 + 17z + 8) / \{(z+1)(z+2)(z+3)\}$ such that the system matrix is diagonal. Then obtain the initial state x(0) in terms of y(0), y(1), y(2) and u(0), u(1), u(2).

Q.no.	Module 5	Marks
5.a	Compare jordan canonical form and canonical form of state models of LTIV discrete time systems. What are the advantages of these forms?	4
	Answer b or c	
b	Obtain the discrete time state and output equations and the pulse transfer function of the following continuous time system with transfer function $G(s) = 1/\{s (s+1)\}$. Sampling period is $T = 1$ sec.	8
c	Consider the system $G(s) = 1/\{s \ (s+1)\}$. Obtain expressions for the state and output at $t = kT + \Delta T$, with $T = 1$ sec and $\Delta T = 0.5$ sec.	8
Q.no.	Module 6	Marks
6.a		
•	Explain the concept of controllability and observability of a discrete time system.	4
•••	•	4
b	system.	8