Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EE304

Course Name: ADVANCED CONTROL THEORY

PART A

Max. Marks: 100

Duration: 3 Hours

Pages: 3

OUCATIO

		Answer all questions, each carries 5 marks.	Marks
1		Compare the effects of P, PI and PID controllers on the closed	(5)
		loop system performance in terms of rise time, peak overshoot,	
		settling time, steady state error and stability.	
2		What are the effects of Lag and Lead compensators on the system performance?	(5)
3		Explain the terms (i) state (ii) state variables (iii) state vector (iv) state space (v) state trajectory of a system.	(5)
4		What is pulse transfer function? Derive the transfer function of a ZOH circuit.	(5)
5		State any five characteristics of Nonlinear systems.	(5)
6		Define Describing function. Explain how describing function can	(5)
		be used for stability analysis of nonlinear systems.	
7		Define Singular point. Explain the nature of Eigen values of	(5)
		system matrix for any five types of singular points.	
8		Explain Liapunov second method of stability for nonlinear	(5)
	• 1	systems.	
		PART B	
		Answer any two full questions, each carries 10 marks.	
9		A unity feedback system has an open loop transfer function $G(S) = K/[S(1+2S)]$. Design a suitable lag compensator so that phase margin is 40° and the velocity error constant is 5.	(10)
10		Design a lead compensator for a unity feedback system with open	(10)

ad compensator for a unity feedback system with open (10)loop transfer function G(S) = K/[S(S+8)] to satisfy the following specifications. (1) Percentage overshoot = 9.5% (2) Natural frequency of oscillation=12 rad/sec (3) Velocity error constant \geq 10. 11

Explain the Ziegler-Nichols method of tuning a PID controller. a) (6)

What is meant by series compensation and feedback compensation **b**) (4)in control systems?

PART C

Answer any two full questions, each carries 10 marks.

12 a) Define controllability and observability of a system and check (6) whether the system $\frac{Y(s)}{U(s)} = \frac{1}{(s+1)(s+2)}$ is controllable or not.

b) Check the stability of the sampled data control system shown (4) below

 $z^{3}-0.2z^{2}-0.25z+0.05=0$

13

Determine the pulse transfer function of the discrete time control (10) system shown in figure for a sampling time of T=1 sec. Also find the response to unit step input. The transfer function of the system is G(s) = 1/(s+1).

14

b)

a) Derive the state model of an R-L-C series circuit

Consider a linear system described by the transfer function Y(s)/U(s) = 10/[S(S+1)(S+2)]. Design a feedback controller with a (7) state feedback so that the closed loop poles are placed at -2, -1±j1.

PART D

Answer any two full questions, each carries 10 marks.

- 15
- Derive the Describing function of saturation with Dead-zone (10) nonlinearity.
- 16

Consider a unity feedback system shown in figure having a saturating amplifier with a gain K. Determine the maximum value of K for the system to be stable. What would be the frequency and nature of limit cycle for a gain of K=2.5?

17

A linear second order system is described by the equation $\ddot{e} + 2\delta\omega_n\dot{e} + \omega_n^2 e=0$ (10)

(3)

(10)

B

Where $\delta = 0.15$, $\omega_n = 1$ rad/sec, e(0)=1.5, and $\dot{e}(0) = 0$ Determine the singular point and state the stability by constructing the phase trajectory using the method of isoclines.
